TABLE OF CONTENTS

CHAPTER 1 NEW FRAMEWORK FOR GEOMETRIC DESIGN

1.1 INTRODUCTION ... 1-1

1.2 PROJECT PURPOSE AND NEED 1-3

1.3 OVERVIEW OF THE NEW FRAMEWORK FOR GEOMETRIC DESIGN 1-5

1.4 FUNCTIONAL CLASSIFICATION FOR MOTOR VEHICLES 1-7

1.4.1 Hierarchy of Motor Vehicle Movement 1-8

1.4.2 Access Control and Mobility Needs 1-10

1.4.3 Functional System Characteristics 1-11

1.4.3.1 Definitions of Urban and Rural Areas 1-11

1.4.3.2 Functional Categories 1-12

1.4.3.3 Functional Systems for Rural Areas 1-12

1.4.3.3.1 Rural Principal Arterial System 1-12

1.4.3.3.2 Rural Minor Arterial System 1-13

1.4.3.3.3 Rural Collector System 1-13

1.4.3.3.4 Rural Local Road System 1-13

1.4.3.4 Functional Systems for Urban Areas 1-14

1.4.3.4.1 Urban Principal Arterial System 1-14

1.4.3.4.2 Urban Minor Arterial Street System 1-15

1.4.3.4.3 Urban Collector Street System 1-15

1.4.3.4.4 Urban Local Street System 1-15

1.4.4 Functional Classification as a Design Type 1-16

1.5 CONTEXT CLASSIFICATION FOR GEOMETRIC DESIGN 1-16

1.5.1 Context Classes for Roads and Streets in Rural Areas 1-20

1.5.1.1 Rural Context ... 1-20

1.5.1.2 Rural Town Context 1-20

1.5.2 Context Classes for Roads and Streets in Urban Areas 1-21

1.5.2.1 Suburban Context 1-21

1.5.2.2 Urban Context .. 1-21
1.5.2.3 Urban Core Context ... 1-22
1.5.3 Design Guidance for Specific Context Classes 1-22
1.6 MULTIMODAL CONSIDERATIONS 1-23
 1.6.1 Road and Street User Groups/Transportation Modes 1-23
 1.6.1.1 Automobiles ... 1-23
 1.6.1.2 Bicyclists ... 1-23
 1.6.1.3 Pedestrians ... 1-24
 1.6.1.4 Transit .. 1-25
 1.6.1.5 Trucks .. 1-25
 1.6.2 Consideration of All Transportation Modes in Design 1-26
1.7 DESIGN PROCESS TO ADDRESS SPECIFIC PROJECT TYPES ... 1-28
 1.7.1 New Construction Projects 1-28
 1.7.2 Reconstruction Projects 1-29
 1.7.3 Construction Projects on Existing Roads 1-30
1.8 DESIGN FLEXIBILITY ... 1-32
1.9 PERFORMANCE-BASED DESIGN 1-34
1.10 REFERENCES .. 1-36

CHAPTER 2 DESIGN CONTROLS AND CRITERIA

2.1 INTRODUCTION .. 2-1
2.2 DRIVER PERFORMANCE AND HUMAN FACTORS 2-1
 2.2.1 Introduction ... 2-1
 2.2.2 Older Drivers and Older Pedestrians 2-2
 2.2.3 The Driving Task .. 2-2
 2.2.4 The Guidance Task .. 2-3
 2.2.4.1 Lane Placement and Road Following 2-3
 2.2.4.2 Car Following .. 2-3
 2.2.4.3 Passing Maneuvers 2-4
 2.2.4.4 Other Guidance Activities 2-4
 2.2.5 The Information System 2-4
 2.2.5.1 Traffic Control Devices 2-4
2.2.5.2 The Roadway and Its Environment 2-4
2.2.6 Information Handling ... 2-5
 2.2.6.1 Reaction Time .. 2-5
 2.2.6.2 Primacy .. 2-8
 2.2.6.3 Expectancy .. 2-8
2.2.7 Driver Error .. 2-8
 2.2.7.1 Errors Due to Driver Deficiencies 2-9
 2.2.7.1.1 Older Drives .. 2-9
 2.2.7.2 Errors Due to Situation Demands 2-11
2.2.8 Speed and Design .. 2-11
2.2.9 Design Assessment .. 2-12
2.3 TRAFFIC CHARACTERISTICS .. 2-13
 2.3.1 General Considerations .. 2-13
 2.3.2 Volume ... 2-13
 2.3.2.1 Average Daily Traffic 2-13
 2.3.2.2 Design Hour Traffic: Rural Areas 2-14
 2.3.2.3 Design Hour Traffic: Urban Areas 2-17
 2.3.3 Directional Distribution ... 2-18
 2.3.4 Composition of Traffic .. 2-19
 2.3.5 Projection of Future Traffic Demands 2-20
 2.3.6 Speed ... 2-21
 2.3.6.1 Operating Speed ... 2-22
 2.3.6.2 Running Speed ... 2-22
 2.3.6.3 Design Speed .. 2-23
 2.3.7 Traffic Flow Relationships 2-27
2.4 HIGHWAY CAPACITY .. 2-29
 2.4.1 General Characteristics .. 2-29
 2.4.2 Application ... 2-29
 2.4.3 Capacity as a Design Control 2-30
 2.4.3.1 Design Service Flow Rate versus Design Volume 2-30
 2.4.3.2 Measures of Congestion 2-30
 2.4.3.3 Relation between Congestion and Traffic Flow Rate 2-32
2.4.3.4 Acceptable Degrees of Congestion ... 2-32
2.4.4 Factors Other Than Traffic Volume That Affect Operating Conditions .. 2-33
 2.4.4.1 Roadway Factors ... 2-33
 2.4.4.2 Alignment ... 2-34
 2.4.4.3 Weaving Sections ... 2-34
 2.4.4.4 Ramp Terminals ... 2-34
 2.4.4.5 Traffic Factors ... 2-35
 2.4.4.6 Peak Hour Factor .. 2-35
2.4.5 Levels of Service ... 2-36
2.4.6 Design Service Flow Rates .. 2-38
 2.4.6.1 Weaving Sections ... 2-38
 2.4.6.2 Multilane Highways without Access Control 2-41
 2.4.6.3 Arterial Streets and Highways in Urban Areas 2-41
 2.4.6.4 Intersections ... 2-41
2.5 ACCESS CONTROL AND ACCESS MANAGEMENT 2-41
 2.5.1 General Conditions ... 2-41
 2.5.2 Basic Principles of Access Management 2-43
 2.5.3 Access Classifications .. 2-44
 2.5.4 Methods of Controlling Access ... 2-45
 2.5.5 Benefits of Controlling Access ... 2-45
2.6 PEDESTRIANS ... 2-50
 2.6.1 General Considerations .. 2-50
 2.6.2 General Characteristics .. 2-50
 2.6.3 Walking Speeds ... 2-52
 2.6.4 Walkway Level of Service .. 2-52
 2.6.5 Intersections ... 2-52
 2.6.6 Reducing Pedestrian–Vehicular Conflicts 2-53
 2.6.7 Accommodating Persons with Disabilities 2-53
 2.6.7.1 Mobility Disabilities ... 2-53
 2.6.7.2 Vision Disabilities ... 2-54
 2.6.7.3 Cognitive Disabilities .. 2-54
3.2.4.1 Criteria for Design .. 3-10
3.2.4.2 Design Values ... 3-10
3.2.4.3 Effect of Grade on Passing Sight Distance 3-12
3.2.4.4 Frequency and Length of Passing Sections 3-12
3.2.5 Sight Distance for Multilane Highways 3-14
3.2.6 Criteria for Measuring Sight Distance 3-15
 3.2.6.1 Height of Driver’s Eye 3-15
 3.2.6.2 Height of Object 3-15
 3.2.6.3 Sight Obstructions 3-16
 3.2.6.4 Measuring Sight Distance 3-16
3.3 HORIZONTAL ALIGNMENT 3-19
 3.3.1 Theoretical Considerations 3-19
 3.3.2 General Considerations 3-20
 3.3.2.1 Superelevation 3-20
 3.3.2.2 Side Friction Factor 3-21
 3.3.2.3 Distribution of e and f over a Range of Curves 3-26
 3.3.3 Design Considerations 3-31
 3.3.3.1 Normal Cross Slope 3-31
 3.3.3.2 Maximum Superelevation Rates for Streets and Highways 3-31
 3.3.3.3 Minimum Radius 3-33
 3.3.3.4 Effects of Grades 3-35
 3.3.4 Design for Rural Highways, Urban Freeways, and High-Speed Urban Streets .. 3-36
 3.3.4.1 Side Friction Factors 3-36
 3.3.4.2 Superelevation 3-37
 3.3.4.3 Procedure for Development of Method 5 Superelevation Distribution .. 3-37
 3.3.5 Design Superelevation Tables 3-41
 3.3.5.1 Minimum Radius of Curve for Section with Normal Crown 3-52
 3.3.6 Design for Low-Speed Urban Streets 3-53
 3.3.6.1 Side Friction Factors 3-53
 3.3.6.2 Superelevation 3-53
© 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
3.3.7 Turning Roadways .. 3-59
 3.3.7.1 Design Speed ... 3-59
 3.3.7.2 Maximum Superelevation for Turning Roadways 3-59
 3.3.7.3 Use of Compound Curves 3-60

3.3.8 Transition Design Controls 3-61
 3.3.8.1 General Considerations 3-61
 3.3.8.2 Tangent-to-Curve Transition 3-62
 3.3.8.2.1 Minimum Length of Superelevation Runoff 3-62
 3.3.8.2.2 Minimum Length of Tangent Runout 3-70
 3.3.8.2.3 Location with Respect to End of Curve 3-70
 3.3.8.2.4 Limiting Superelevation Rates 3-72
 3.3.8.3 Spiral Curve Transitions 3-73
 3.3.8.4 Length of Spiral 3-74
 3.3.8.4.1 Length of Spiral 3-74
 3.3.8.4.2 Maximum Radius for Use of a Spiral 3-75
 3.3.8.4.3 Minimum Length of Spiral 3-76
 3.3.8.4.4 Maximum Length of Spiral 3-76
 3.3.8.4.5 Desirable Length of Spiral 3-77
 3.3.8.4.6 Length of Superelevation Runoff 3-78
 3.3.8.4.7 Limiting Superelevation Rates 3-78
 3.3.8.4.8 Length of Tangent Runout 3-79
 3.3.8.4.9 Location with Respect to End of Curve 3-81
 3.3.8.5 Compound Curve Transition 3-81
 3.3.8.6 Methods of Attaining Superelevation 3-81
 3.3.8.7 Design of Smooth Profiles for Traveled-Way Edges 3-85
 3.3.8.8 Axis of Rotation with a Median 3-86
 3.3.8.8.1 Case I .. 3-86
 3.3.8.8.2 Case II .. 3-86
 3.3.8.8.3 Case III 3-86
 3.3.8.8.4 Divided Highway 3-87
 3.3.8.9 Minimum Transition Grades and Drainage Considerations ... 3-87
 3.3.8.10 Transitions and Compound Curves for Turning Roadways ... 3-88
3.3.8.11 Length of Spiral for Turning Roadways 3-89
3.3.8.12 Compound Circular Curves .. 3-90
3.3.9 Offtracking ... 3-91
 3.3.9.1 Derivation of Design Values for Widening on Horizontal Curves ... 3-91
3.3.10 Traveled-Way Widening on Horizontal Curves 3-97
 3.3.10.1 Design Values for Traveled-Way Widening 3-101
 3.3.10.2 Application of Widening on Curves 3-101
3.3.11 Widths for Turning Roadways at Intersections 3-103
 3.3.11.1 Three Cases .. 3-105
 3.3.11.1.1 Case I ... 3-105
 3.3.11.1.2 Case II ... 3-105
 3.3.11.1.3 Case III .. 3-105
 3.3.11.2 Design Values .. 3-107
 3.3.11.3 Widths Outside the Traveled Way 3-112
3.3.12 Sight Distance on Horizontal Curves 3-113
 3.3.12.1 Stopping Sight Distance .. 3-114
 3.3.12.2 Passing Sight Distance .. 3-119
3.3.13 General Controls for Horizontal Alignment 3-119
3.4 VERTICAL ALIGNMENT .. 3-121
 3.4.1 Terrain ... 3-121
 3.4.2 Grades ... 3-122
 3.4.2.1 Vehicle Operating Characteristics on Grades 3-122
 3.4.2.1.1 Passenger Cars .. 3-122
 3.4.2.1.2 Trucks ... 3-122
 3.4.2.1.3 Recreational Vehicles 3-126
 3.4.2.2 Control Grades for Design 3-130
 3.4.2.2.1 Maximum Grades ... 3-130
 3.4.2.2.2 Minimum Grades .. 3-130
 3.4.2.2.3 Pedestrian Considerations 3-130
 3.4.2.3 Critical Lengths of Grade for Design 3-130
 3.4.3 Climbing Lanes ... 3-137
3.4.3.1 Climbing Lanes for Two-Lane Highways................. 3-137
 3.4.3.1.1 General...................................... 3-137
 3.4.3.1.2 Trucks...................................... 3-139
 3.4.3.1.3 Summary................................... 3-141
3.4.3.2 Climbing Lanes on Freeways and Multilane Highways...... 3-142
 3.4.3.2.1 General...................................... 3-142
 3.4.3.2.2 Trucks...................................... 3-142

3.4.4 Methods for Increasing Passing Opportunities on Two-Lane
 Roads .. 3-145
 3.4.4.1 Passing Lanes...................................... 3-145
 3.4.4.2 2+1 Roadways..................................... 3-149
 3.4.4.3 Turnouts.. 3-152
 3.4.4.4 Shoulder Driving.................................. 3-153
 3.4.4.5 Shoulder Use Sections............................ 3-154

3.4.5 Emergency Escape Ramps.. 3-154
 3.4.5.1 General.. 3-154
 3.4.5.2 Need and Location for Emergency Escape Ramps..... 3-156
 3.4.5.3 Types of Emergency Escape Ramps.................. 3-157
 3.4.5.4 Design Considerations............................. 3-159
 3.4.5.5 Brake-Check Areas................................. 3-164
 3.4.5.6 Maintenance... 3-164

3.4.6 Vertical Curves.. 3-164
 3.4.6.1 General Considerations............................. 3-164
 3.4.6.2 Crest Vertical Curves............................... 3-166
 3.4.6.2.1 Design Controls: Stopping Sight Distance.... 3-167
 3.4.6.2.2 Design Controls: Passing Sight Distance..... 3-171
 3.4.6.3 Sag Vertical Curves................................. 3-172
 3.4.6.4 Sight Distance at Undercrossings................... 3-177
 3.4.6.5 General Controls for Vertical Alignment............. 3-179

3.5 COMBINATIONS OF HORIZONTAL AND VERTICAL ALIGNMENT..... 3-180
 3.5.1 General Considerations................................. 3-180
 3.5.2 General Design Controls............................... 3-181
4.4.5 Shoulder Contrast ... 4-15
4.4.6 Turnouts .. 4-16

4.5 RUMBLE STRIPS ... 4-16

4.6 ROADSIDE DESIGN ... 4-17
4.6.1 Clear Zones ... 4-17
4.6.2 Lateral Offset .. 4-18

4.7 CURBS ... 4-19
4.7.1 General Considerations ... 4-19
4.7.2 Curb Configurations ... 4-19
4.7.2.1 Gutters .. 4-21
4.7.3 Curb Placement ... 4-22

4.8 DRAINAGE CHANNELS AND SIDESLOPES 4-23
4.8.1 General Considerations ... 4-23
4.8.2 Drainage .. 4-23
4.8.3 Drainage Channels ... 4-26
4.8.4 Sideslopes .. 4-28

4.9 ILLUSTRATIVE OUTER CROSS SECTIONS 4-32
4.9.1 Normal Crown Sections ... 4-32
4.9.2 Superelevated Sections .. 4-32

4.10 TRAFFIC BARRIERS ... 4-33
4.10.1 General Considerations ... 4-33
4.10.2 Longitudinal Barriers ... 4-34
4.10.2.1 Roadside Barriers .. 4-34
4.10.2.2 Median Barriers .. 4-35
4.10.3 Bridge Railings ... 4-37
4.10.4 Crash Cushions ... 4-38

4.11 MEDIANS ... 4-38

4.12 FRONTAGE ROADS ... 4-41

4.13 OUTER SEPARATIONS .. 4-45

4.14 ROADWAY TRAFFIC NOISE ABATEMENT 4-46
5.2.1 General Design Considerations 5-2
- 5.2.1.1 Design Speed .. 5-2
- 5.2.1.2 Design Traffic Volume 5-3
- 5.2.1.3 Levels of Service 5-3
- 5.2.1.4 Alignment ... 5-3
- 5.2.1.5 Grades ... 5-3
- 5.2.1.6 Cross Slope .. 5-4

5.2.2 Cross-Sectional Elements 5-6
- 5.2.2.1 Width of Roadway 5-6
- 5.2.2.2 Number of Lanes 5-6
- 5.2.2.3 Right-of-Way Width 5-7
- 5.2.2.4 Medians ... 5-7
- 5.2.2.5 Bicycle and Pedestrian Facilities 5-8
- 5.2.2.6 Driveways ... 5-8
- 5.2.2.7 Structures ... 5-9
 - 5.2.2.7.1 New and Reconstructed Structures 5-9
 - 5.2.2.7.2 Vertical Clearance 5-9
- 5.2.2.8 Roadside Design 5-9
 - 5.2.2.8.1 Clear Zones 5-10
 - 5.2.2.8.2 Lateral Offset 5-10
 - 5.2.2.8.3 Foreslopes 5-10
- 5.2.2.9 Intersection Design 5-11
- 5.2.2.10 Railroad–Highway Grade Crossings 5-11
- 5.2.2.11 Traffic Control Devices 5-12
- 5.2.2.12 Drainage .. 5-12
- 5.2.2.13 Erosion Control and Landscaping 5-12
- 5.2.2.14 Design of Local Streets in the Rural Town Context 5-12

5.3 LOCAL STREETS IN URBAN AREAS 5-12
- 5.3.1 General Design Considerations 5-13
 - 5.3.1.1 Design Speed 5-14
 - 5.3.1.2 Design Traffic Volume 5-14
 - 5.3.1.3 Levels of Service 5-14
5.3.1.4 Alignment ... 5-14
5.3.1.5 Grades ... 5-15
5.3.1.6 Cross Slope 5-15
5.3.1.7 Superelevation 5-15
5.3.1.8 Sight Distance 5-16
5.3.2 Cross-Sectional Elements ... 5-16
5.3.2.1 Width of Traveled Way 5-16
5.3.2.2 Number of Lanes 5-16
5.3.2.3 Parking Lanes ... 5-16
5.3.2.4 Medians ... 5-17
5.3.2.5 Curbs .. 5-17
5.3.2.6 Right-of-Way Width 5-17
5.3.2.7 Provision for Utilities 5-17
5.3.2.8 Border Area ... 5-18
5.3.2.9 Bicycle and Pedestrian Facilities 5-18
5.3.2.10 Cul-de-Sacs and Turnarounds 5-19
5.3.2.11 Alleys ... 5-20
5.3.2.12 Driveways .. 5-21
5.3.3 Structures ... 5-22
5.3.3.1 New and Reconstructed Structures 5-22
5.3.3.2 Vertical Clearance 5-23
5.3.4 Roadside Design ... 5-23
5.3.4.1 Clear Zones .. 5-23
5.3.4.2 Lateral Offset .. 5-23
5.3.5 Intersection Design 5-23
5.3.6 Railroad–Highway Grade Crossings 5-25
5.3.7 Traffic Control Devices 5-25
5.3.8 Roadway Lighting 5-25
5.3.9 Drainage ... 5-26
5.3.10 Erosion Control .. 5-26
5.3.11 Landscaping ... 5-27
5.4 RECREATIONAL ROADS 5-27

© 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
5.4.1 General Design Considerations .. 5-27
 5.4.1.1 Design Speed .. 5-28
 5.4.1.2 Design Vehicle ... 5-29
 5.4.1.3 Grades .. 5-29
 5.4.1.4 Vertical Alignment .. 5-30
 5.4.1.5 Horizontal Alignment and Superelevation 5-31
 5.4.1.6 Sight Distance ... 5-32
 5.4.1.7 Passing Sight Distance 5-32
 5.4.1.8 Cross Slope .. 5-33
5.4.2 Cross-Sectional Elements ... 5-33
 5.4.2.1 Width of Roadway .. 5-33
 5.4.2.2 Number of Lanes ... 5-34
5.4.3 Structures .. 5-35
5.4.4 Roadside Design .. 5-36
 5.4.4.1 Clear Zones .. 5-36
 5.4.4.2 Roadside Slopes .. 5-36
 5.4.4.3 Roadside Barriers ... 5-37
5.4.5 Signing and Marking ... 5-37
5.4.6 Bicycle and Pedestrian Facilities 5-37
5.5 RESOURCE RECOVERY AND LOCAL SERVICE ROADS 5-37
5.6 LOW-VOLUME ROADS .. 5-39
5.7 REFERENCES .. 5-39

CHAPTER 6 COLLECTOR ROADS AND STREETS

6.1 INTRODUCTION .. 6-1
6.2 COLLECTORS IN RURAL AREAS 6-2
 6.2.1 General Design Considerations 6-2
 6.2.1.1 Design Speed ... 6-2
 6.2.1.2 Design Traffic Volumes 6-3
 6.2.1.3 Level of Service ... 6-3
 6.2.1.4 Alignment ... 6-3

© 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
6.2.1 Grades .. 6-4
6.2.1.6 Cross Slope .. 6-4
6.2.1.7 Superelevation 6-4
6.2.1.8 Sight Distance 6-4
6.2.1.5 Grades .. 6-4
6.2.2 Cross-Sectional Elements 6-6
6.2.2.1 Width of Roadway 6-6
6.2.2.2 Number of Lanes 6-6
6.2.2.3 Parking Lanes 6-7
6.2.2.4 Medians .. 6-7
6.2.2.5 Right-of-Way Width 6-7
6.2.2.6 Bicycle/Pedestrian Facilities 6-7
6.2.3 Structures .. 6-7
6.2.3.1 New and Reconstructed Structures 6-7
6.2.3.2 Vertical Clearance 6-8
6.2.4 Roadside Design 6-8
6.2.4.1 Clear Zones 6-8
6.2.4.2 Lateral Offset 6-8
6.2.4.3 Foreslopes .. 6-9
6.2.5 Intersection Design 6-9
6.2.6 Railroad–Highway Grade Crossings 6-10
6.2.7 Traffic Control Devices 6-10
6.2.8 Drainage ... 6-10
6.2.9 Erosion Control and Landscaping 6-10
6.2.10 Speed Transitions Entering Rural Towns 6-10
6.2.11 Design of Collectors in the Rural Town Context 6-12
6.3 Collectors in Urban Areas 6-12
6.3.1 General Design Considerations 6-13
6.3.1.1 Design Speed 6-13
6.3.1.2 Design Traffic Volumes 6-14
6.3.1.3 Level of Service 6-14
6.3.1.4 Alignment ... 6-14
6.3.1.5 Grades ... 6-14
6.3.1.6 Cross Slope .. 6-15
6.3.1.7 Superelevation .. 6-15
6.3.1.8 Sight Distance .. 6-15

6.3.2 Cross-Sectional Elements 6-16
6.3.2.1 Width of Roadway 6-16
6.3.2.2 Number of Lanes 6-16
6.3.2.3 Parking Lanes ... 6-16
6.3.2.4 Medians ... 6-17
6.3.2.5 Curbs .. 6-18
6.3.2.6 Right-of-Way Width 6-18
6.3.2.7 Provision for Utilities 6-19
6.3.2.8 Border Area .. 6-19
6.3.2.9 Bicycle/Pedestrian Facilities 6-19
6.3.2.10 Driveways .. 6-20

6.3.3 Structures .. 6-20
6.3.3.1 New and Reconstructed Structures 6-20
6.3.3.2 Vertical Clearance 6-20

6.3.4 Roadside Design 6-21
6.3.4.1 Clear Zones ... 6-21
6.3.4.2 Lateral Offset 6-21

6.3.5 Intersection Design 6-22
6.3.6 Railroad–Highway Grade Crossings 6-23
6.3.7 Traffic Control Devices 6-23
6.3.8 Roadway Lighting 6-23
6.3.9 Drainage .. 6-24
6.3.10 Erosion Control .. 6-24
6.3.11 Landscaping .. 6-24

6.4 REFERENCES ... 6-25

CHAPTER 7 ARTERIAL ROADS AND STREETS

7.1 INTRODUCTION ... 7-1
7.2 ARTERIALS IN RURAL AREAS 7-2
7.2.1 General Characteristics .. 7-2

7.2.2 General Design Considerations 7-3

7.2.2.1 Design Speed ... 7-3

7.2.2.2 Design Traffic Volumes 7-3

7.2.2.3 Level of Service ... 7-4

7.2.2.4 Sight Distance ... 7-4

7.2.2.5 Alignment .. 7-5

7.2.2.6 Grades .. 7-5

7.2.2.7 Cross Slope ... 7-6

7.2.2.8 Superelevation .. 7-6

7.2.3 Cross-Sectional Elements 7-6

7.2.3.1 Roadway Width .. 7-6

7.2.3.2 Number of Lanes ... 7-7

7.2.3.3 Cross Section and Right-of-Way 7-7

7.2.4 Roadside Design .. 7-8

7.2.4.1 Clear Zones ... 7-8

7.2.4.2 Lateral Offset ... 7-8

7.2.5 Structures .. 7-9

7.2.5.1 Vertical Clearances 7-9

7.2.6 Traffic Control Devices .. 7-9

7.2.7 Erosion Control ... 7-9

7.2.8 Provision for Passing ... 7-9

7.2.9 Ultimate Development of Multilane Divided Arterials in Rural Areas .. 7-11

7.2.10 Multilane Undivided Arterials in Rural Areas 7-13

7.2.11 Divided Arterials in Rural Areas 7-15

7.2.11.1 General Features ... 7-15

7.2.11.2 Lane Widths .. 7-15

7.2.11.3 Cross Slope ... 7-15

7.2.11.4 Shoulders ... 7-16

7.2.11.5 Median Barrier Clearance 7-17

7.2.11.6 Medians ... 7-17
7.2.11.7 Alignment and Profile .. 7-18
7.2.11.8 Climbing Lanes on Multilane Arterials in Rural Areas 7-19
7.2.11.9 Superelevated Cross Sections 7-20
7.2.11.10 Cross Section and Right-of-Way Widths 7-24
7.2.11.11 Sections with Widely Separated Roadways 7-28
7.2.12 Intersections .. 7-29
7.2.13 Access Management ... 7-29
7.2.14 Bicycle and Pedestrian Facilities 7-30
7.2.15 Bus Turnouts .. 7-30
7.2.16 Railroad–Highway Grade Crossings 7-31
7.2.17 Lighting .. 7-31
7.2.18 Rest Areas ... 7-32
7.2.19 Speed Transitions Entering Rural Towns 7-32
7.2.20 Design of Arterials in the Rural Town Context 7-34

7.3 ARTERIALS IN URBAN AREAS 7-34
7.3.1 General Characteristics ... 7-35
7.3.2 General Design Considerations 7-36
7.3.2.1 Design Speed .. 7-36
7.3.2.2 Design Traffic Volumes 7-36
7.3.2.3 Level of Service .. 7-37
7.3.2.4 Sight Distance .. 7-37
7.3.2.5 Alignment ... 7-37
7.3.2.6 Grades .. 7-37
7.3.2.7 Superelevation .. 7-38
7.3.2.8 Cross Slope ... 7-38
7.3.3 Cross-Sectional Elements .. 7-39
7.3.3.1 Roadway Widths .. 7-39
7.3.3.2 Lane Widths ... 7-39
7.3.3.3 Curbs and Shoulders .. 7-40
7.3.3.4 Number of Lanes .. 7-40
7.3.3.5 Medians .. 7-40
7.3.3.6 Drainage ... 7-45
7.3.3.7 Parking Lanes 7-45
7.3.3.8 Borders and Sidewalks 7-46
7.3.3.9 Right-of-Way Width 7-48
7.3.4 Roadside Design 7-49
 7.3.4.1 Clear Zones 7-49
 7.3.4.2 Lateral Offset 7-49
7.3.5 Structures ... 7-50
 7.3.5.1 New and Reconstructed Structures 7-50
 7.3.5.2 Vertical Clearances 7-51
7.3.6 Traffic Barriers .. 7-51
7.3.7 Railroad–Highway Grade Crossings 7-51
7.3.8 Access Management 7-51
 7.3.8.1 General Features 7-51
 7.3.8.2 Access Control by Statute 7-52
 7.3.8.3 Access Control by Zoning 7-52
 7.3.8.4 Access Control through Driveway Regulations 7-53
 7.3.8.5 Access Control through Geometric Design 7-53
7.3.9 Bicycle and Pedestrian Facilities 7-54
 7.3.9.1 Bicycle Facilities 7-54
 7.3.9.2 Pedestrian Facilities 7-54
7.3.10 Provision for Utilities 7-56
7.3.11 Intersection Design 7-56
7.3.12 Operational Control 7-56
 7.3.12.1 Traffic Control Devices 7-57
 7.3.12.2 Provision and Management of Curb Parking 7-58
7.3.13 Speed Management in Design 7-58
7.3.14 Directional Lane Usage 7-59
 7.3.14.1 One-Way Operation 7-59
 7.3.14.2 Reverse-Flow Operation 7-60
7.3.15 Frontage Roads and Outer Separations 7-62
7.3.16 Grade Separations and Interchanges 7-63
7.3.17 Erosion Control 7-64
7.3.18 Lighting ... 7-64
7.3.19 Public Transit Facilities ... 7-65
 7.3.19.1 Location of Bus Stops .. 7-66
 7.3.19.2 Bus Turnouts ... 7-67
 7.3.19.3 Reserved Bus Lanes ... 7-68
 7.3.19.4 Traffic Control Measures 7-69

7.4 REFERENCES ... 7-69

CHAPTER 8 FREEWAYS

8.1 INTRODUCTION .. 8-1
8.2 GENERAL DESIGN CONSIDERATIONS 8-2
 8.2.1 Design Speed .. 8-2
 8.2.2 Design Traffic Volumes ... 8-2
 8.2.3 Levels of Service .. 8-3
 8.2.4 Traveled Way and Shoulders 8-3
 8.2.5 Curbs .. 8-4
 8.2.6 Superelevation .. 8-4
 8.2.7 Grades .. 8-4
 8.2.8 Structures .. 8-5
 8.2.9 Vertical Clearance .. 8-5
 8.2.10 Roadside Design ... 8-6
 8.2.11 Ramps and Terminals ... 8-6
 8.2.12 Outer Separations, Borders, and Frontage Roads 8-6
8.3 FREEWAYS IN RURAL AREAS 8-7
 8.3.1 Alignment and Profile ... 8-7
 8.3.2 Medians .. 8-9
 8.3.3 Sideslopes .. 8-11
 8.3.4 Frontage Roads .. 8-12
8.4 FREEWAYS IN URBAN AREAS 8-12
 8.4.1 General Design Characteristics 8-12
 8.4.2 Medians .. 8-13
<table>
<thead>
<tr>
<th>Section</th>
<th>Freeway Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.3</td>
<td>Depressed Freeways</td>
<td>8-13</td>
</tr>
<tr>
<td>8.4.3.1</td>
<td>General Characteristics</td>
<td>8-13</td>
</tr>
<tr>
<td>8.4.3.2</td>
<td>Slopes and Walls</td>
<td>8-14</td>
</tr>
<tr>
<td>8.4.3.3</td>
<td>Typical Cross Section</td>
<td>8-15</td>
</tr>
<tr>
<td>8.4.3.4</td>
<td>Restrictive Cross Section</td>
<td>8-15</td>
</tr>
<tr>
<td>8.4.3.5</td>
<td>Walled Cross Section</td>
<td>8-16</td>
</tr>
<tr>
<td>8.4.3.6</td>
<td>Example of Depressed Freeway</td>
<td>8-17</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Elevated Freeways</td>
<td>8-19</td>
</tr>
<tr>
<td>8.4.4.1</td>
<td>General Characteristics</td>
<td>8-19</td>
</tr>
<tr>
<td>8.4.4.2</td>
<td>Medians</td>
<td>8-20</td>
</tr>
<tr>
<td>8.4.4.3</td>
<td>Ramps and Terminals</td>
<td>8-20</td>
</tr>
<tr>
<td>8.4.4.4</td>
<td>Frontage Roads</td>
<td>8-20</td>
</tr>
<tr>
<td>8.4.4.5</td>
<td>Building Offset</td>
<td>8-20</td>
</tr>
<tr>
<td>8.4.4.6</td>
<td>Typical Cross Section</td>
<td>8-21</td>
</tr>
<tr>
<td>8.4.4.7</td>
<td>Freeways on Earth Embankment</td>
<td>8-23</td>
</tr>
<tr>
<td>8.4.4.8</td>
<td>Examples of Elevated Freeways</td>
<td>8-24</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Ground-Level Freeways</td>
<td>8-26</td>
</tr>
<tr>
<td>8.4.5.1</td>
<td>General Characteristics</td>
<td>8-26</td>
</tr>
<tr>
<td>8.4.5.2</td>
<td>Typical Cross Section</td>
<td>8-26</td>
</tr>
<tr>
<td>8.4.5.3</td>
<td>Restrictive Cross Section</td>
<td>8-27</td>
</tr>
<tr>
<td>8.4.5.4</td>
<td>Example of a Ground-Level Freeway</td>
<td>8-28</td>
</tr>
<tr>
<td>8.4.6</td>
<td>Combination-Type Freeways</td>
<td>8-28</td>
</tr>
<tr>
<td>8.4.6.1</td>
<td>General Characteristics</td>
<td>8-28</td>
</tr>
<tr>
<td>8.4.6.2</td>
<td>Profile Control</td>
<td>8-28</td>
</tr>
<tr>
<td>8.4.6.2.1</td>
<td>Rolling Terrain</td>
<td>8-28</td>
</tr>
<tr>
<td>8.4.6.2.2</td>
<td>Level Terrain</td>
<td>8-29</td>
</tr>
<tr>
<td>8.4.6.3</td>
<td>Cross-Section Control</td>
<td>8-30</td>
</tr>
<tr>
<td>8.4.7</td>
<td>Special Freeway Designs</td>
<td>8-33</td>
</tr>
<tr>
<td>8.4.7.1</td>
<td>Reverse-Flow Roadways</td>
<td>8-33</td>
</tr>
<tr>
<td>8.4.7.2</td>
<td>Dual-Divided Freeways</td>
<td>8-36</td>
</tr>
<tr>
<td>8.4.7.3</td>
<td>Freeways with Collector–Distributor Roads</td>
<td>8-39</td>
</tr>
<tr>
<td>8.4.8</td>
<td>Accommodation of Managed Lanes and Transit Facilities</td>
<td>8-39</td>
</tr>
</tbody>
</table>
8.4.8.1 General Considerations ... 8-39
8.4.8.2 Buses .. 8-41
 8.4.8.2.1 Exclusive HOV Lanes .. 8-41
 8.4.8.2.2 Bus Stops ... 8-41
 8.4.8.2.3 Bus-Stop Arrangements 8-41
 8.4.8.2.4 Bus Stops at Freeway Level 8-41
 8.4.8.2.5 Bus Stops at Street Level 8-45
 8.4.8.2.6 Stairs, Ramps, Escalators, and Elevators 8-46
8.4.8.3 Rail Transit ... 8-47
 8.4.8.3.1 Typical Sections .. 8-48
 8.4.8.3.2 Stations .. 8-49
 8.4.8.3.3 Example of Rail Transit Combined with Freeway .. 8-50
8.5 REFERENCES .. 8-51

CHAPTER 9 INTERSECTIONS

9.1 INTRODUCTION ... 9-1
9.2 GENERAL DESIGN CONSIDERATIONS AND OBJECTIVES 9-2
 9.2.1 Characteristics of Intersections 9-2
 9.2.2 Intersection Functional Area 9-3
 9.2.3 Design Objectives ... 9-4
 9.2.4 Design Considerations for Intersection User Groups 9-6
 9.2.5 Intersection Capacity ... 9-9
 9.2.6 Intersection Design Elements 9-10
9.3 TYPES AND EXAMPLES OF INTERSECTIONS 9-11
 9.3.1 Three-Leg Intersections ... 9-14
 9.3.1.1 Basic Types of Intersections 9-14
 9.3.1.2 Channelized Three-Leg Intersections 9-15
 9.3.2 Four-Leg Intersections ... 9-18
 9.3.2.1 Basic Types .. 9-18
 9.3.2.2 Channelized Four-Leg Intersections 9-19
 9.3.3 Multileg Intersections .. 9-24
9.3.4 Roundabouts ... 9-26
 9.3.4.1 Mini-Roundabouts .. 9-28
 9.3.4.2 Single-Lane Roundabouts .. 9-29
 9.3.4.3 Multilane Roundabouts .. 9-30

9.4 ALIGNMENT AND PROFILE ... 9-31
 9.4.1 General Considerations .. 9-31
 9.4.2 Alignment ... 9-31
 9.4.3 Profile ... 9-33

9.5 INTERSECTION SIGHT DISTANCE 9-35
 9.5.1 General Considerations .. 9-35
 9.5.2 Sight Triangles .. 9-36
 9.5.2.1 Approach Sight Triangles .. 9-36
 9.5.2.2 Departure Sight Triangles ... 9-38
 9.5.2.3 Identification of Sight Obstructions within Sight Triangles 9-38
 9.5.3 Intersection Control .. 9-39
 9.5.3.1 Case A—Intersections with No Control 9-40
 9.5.3.2 Case B—Intersections with Stop Control on the Minor Road 9-42
 9.5.3.2.1 Case B1—Left Turn from the Minor Road 9-43
 9.5.3.2.2 Case B2—Right Turn from the Minor Road 9-47
 9.5.3.2.3 Case B3—Crossing Maneuver from the Minor Road 9-48
 9.5.3.3 Case C—Intersections with Yield Control on the Minor Road 9-50
 9.5.3.3.1 Case C1—Crossing Maneuver from the Minor Road 9-51
 9.5.3.3.2 Case C2—Left- and Right-Turn Maneuvers 9-53
 9.5.3.4 Case D—Intersections with Traffic Signal Control 9-55
 9.5.3.5 Case E—Intersections with All-Way Stop Control 9-56
 9.5.3.6 Case F—Left Turns from the Major Road 9-56
 9.5.3.7 Case G—Roundabouts ... 9-58
 9.5.4 Effect of Skew .. 9-58

9.6 TURNING ROADWAYS AND CHANNELIZATION 9-59
 9.6.1 Turning Roadways ... 9-60
9.7.3.3 Median End Treatment .. 9-113
9.7.3.4 Offset Left-Turn Lanes .. 9-113
9.7.3.5 Simultaneous Left Turns 9-115
9.7.3.6 Double or Triple Left-Turn Lanes 9-116

9.8 MEDIAN OPENINGS .. 9-118
9.8.1 General Design Considerations 9-118
9.8.2 Control Radii for Minimum Turning Paths 9-119
 9.8.2.1 Shape of Median End ... 9-120
9.8.3 Effect of Skew ... 9-121
9.8.4 Design Considerations for Higher Speed Left Turns 9-122

9.9 INDIRECT LEFT TURNS AND U-TURNS 9-124
9.9.1 General Design Considerations 9-124
9.9.2 Intersections with Jughandle or Loop Roadways 9-126
9.9.3 Displaced Left-Turn Intersections 9-129
9.9.4 Wide Medians with U-Turn Crossover Roadways 9-130
9.9.5 Location and Design of U-Turn Median Openings 9-136

9.10 ROUNDABOUT DESIGN .. 9-141
9.10.1 Geometric Elements of Roundabouts 9-143
 9.10.1.1 Size and Space Needs .. 9-144
9.10.2 Fundamental Principles .. 9-145
 9.10.2.1 Slow Speeds Using Deflection 9-146
 9.10.2.2 Lane Balance and Lane Continuity 9-146
 9.10.2.3 Appropriate Natural Path Alignment 9-148
 9.10.2.4 Design Vehicle ... 9-149
 9.10.2.5 Nonmotorized Users ... 9-150
 9.10.2.6 Sight Distance and Visibility 9-151

9.11 OTHER INTERSECTION DESIGN CONSIDERATIONS 9-151
9.11.1 Intersection Design Elements with Frontage Roads 9-151
9.11.2 Traffic Control Devices .. 9-155
9.11.3 Bicyclists .. 9-156
9.11.4 Pedestrians ... 9-156
9.11.5 Lighting ... 9-156
9.11.6 Driveways... 9-157
9.11.7 Left Turns at Midblock Locations and at Unsignalized Intersections on Streets with Flush Medians ... 9-158

9.12 RAILROAD–HIGHWAY GRADE CROSSINGS 9-159

9.12.1 Horizontal Alignment .. 9-159
9.12.2 Vertical Alignment ... 9-160
9.12.3 Crossing Design ... 9-161
9.12.4 Sight Distance .. 9-162

9.13 REFERENCES .. 9-168

CHAPTER 10 GRADE SEPARATIONS AND INTERCHANGES

10.1 INTRODUCTION AND GENERAL TYPES OF INTERCHANGES 10-1
10.2 WARRANTS FOR INTERCHANGES AND GRADE SEPARATIONS 10-3
10.3 ADAPTABILITY OF HIGHWAY GRADE SEPARATIONS AND INTERCHANGES. ... 10-6

10.3.1 Traffic and Operation ... 10-6
10.3.2 Site Conditions ... 10-7
10.3.3 Type of Highway and Intersecting Facility 10-7

10.4 ACCESS SEPARATIONS AND CONTROL ON THE CROSSROAD AT INTERCHANGES ... 10-8

10.5 SAFETY ... 10-9

10.6 STAGE DEVELOPMENT ... 10-10

10.7 ECONOMIC FACTORS .. 10-11

10.7.1 Initial Costs .. 10-11
10.7.2 Maintenance Costs .. 10-11
10.7.3 Vehicular Operating Costs 10-11

10.8 GRADE SEPARATION STRUCTURES 10-11

10.8.1 Introduction .. 10-11
10.8.2 Types of Separation Structures 10-12
10.8.3 Overpass versus Underpass Roadways 10-18
10.8.3.1 General Design Considerations 10-18
10.8.3.2 Structure Widths 10-21
10.8.4 Underpass Roadways 10-22
 10.8.4.1 Lateral Offset 10-22
 10.8.4.2 Vertical Clearance 10-24
10.8.5 Overpass Roadways 10-25
 10.8.5.1 Bridge Railings 10-25
 10.8.5.2 Lateral Offset 10-26
 10.8.5.3 Medians 10-27
10.8.6 Longitudinal Distance to Attain Grade Separation 10-27
10.8.7 Grade Separations without Ramps 10-29

10.9 INTERCHANGES .. 10-30
10.9.1 General Considerations 10-30
10.9.2 Three-Leg Designs 10-31
10.9.3 Four-Leg Designs 10-39
 10.9.3.1 Ramps in One Quadrant 10-39
 10.9.3.2 Diamond Interchanges 10-40
 10.9.3.3 Roundabout Interchanges 10-47
 10.9.3.4 Single-Point Diamond Interchanges 10-48
 10.9.3.5 Diverging Diamond Interchanges 10-53
 10.9.3.6 Cloverleaf Interchanges 10-57
 10.9.3.6.1 Partial Cloverleaf Ramp Arrangements 10-60
 10.9.3.7 Directional Interchanges 10-63
 10.9.3.7.1 With Loops and Weaving 10-66
 10.9.3.7.2 With Loops and No Weaving 10-67
 10.9.3.7.3 Fully Directional 10-67
10.9.4 Other Interchange Configurations 10-72
 10.9.4.1 Offset Interchanges 10-72
 10.9.4.2 Combination Interchanges 10-72
10.9.5 General Design Considerations 10-76
 10.9.5.1 Determination of Interchange Configuration 10-76
 10.9.5.2 Approaches to the Structure 10-79
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9.5.2.1</td>
<td>Alignment, Profile, and Cross Section</td>
<td>10-79</td>
</tr>
<tr>
<td>10.9.5.2.2</td>
<td>Sight Distance</td>
<td>10-81</td>
</tr>
<tr>
<td>10.9.5.3</td>
<td>Interchange Spacing</td>
<td>10-82</td>
</tr>
<tr>
<td>10.9.5.4</td>
<td>Uniformity of Interchange Patterns</td>
<td>10-82</td>
</tr>
<tr>
<td>10.9.5.5</td>
<td>Route Continuity</td>
<td>10-83</td>
</tr>
<tr>
<td>10.9.5.6</td>
<td>Overlapping Routes</td>
<td>10-84</td>
</tr>
<tr>
<td>10.9.5.7</td>
<td>Signing and Marking</td>
<td>10-86</td>
</tr>
<tr>
<td>10.9.5.8</td>
<td>Basic Number of Lanes</td>
<td>10-86</td>
</tr>
<tr>
<td>10.9.5.9</td>
<td>Coordination of Lane Balance and Basic Number of Lanes</td>
<td>10-87</td>
</tr>
<tr>
<td>10.9.5.10</td>
<td>Auxiliary Lanes</td>
<td>10-90</td>
</tr>
<tr>
<td>10.9.5.11</td>
<td>Lane Reductions</td>
<td>10-93</td>
</tr>
<tr>
<td>10.9.5.12</td>
<td>Weaving Sections</td>
<td>10-94</td>
</tr>
<tr>
<td>10.9.5.13</td>
<td>Collector–Distributor Roads</td>
<td>10-95</td>
</tr>
<tr>
<td>10.9.5.14</td>
<td>Two-Exit versus Single-Exit Interchange Design</td>
<td>10-96</td>
</tr>
<tr>
<td>10.9.5.15</td>
<td>Wrong-Way Entry</td>
<td>10-98</td>
</tr>
<tr>
<td>10.9.6</td>
<td>Ramps</td>
<td>10-102</td>
</tr>
<tr>
<td>10.9.6.1</td>
<td>Types and Examples</td>
<td>10-102</td>
</tr>
<tr>
<td>10.9.6.2</td>
<td>General Ramp Design Considerations</td>
<td>10-105</td>
</tr>
<tr>
<td>10.9.6.2.1</td>
<td>Design Speed</td>
<td>10-105</td>
</tr>
<tr>
<td>10.9.6.2.2</td>
<td>Portion of Ramp to Which Design Speed Is Applicable</td>
<td>10-105</td>
</tr>
<tr>
<td>10.9.6.2.3</td>
<td>Ramps for Right Turns</td>
<td>10-105</td>
</tr>
<tr>
<td>10.9.6.2.4</td>
<td>Loop Ramps</td>
<td>10-106</td>
</tr>
<tr>
<td>10.9.6.2.5</td>
<td>Two-Lane Loop Ramps</td>
<td>10-106</td>
</tr>
<tr>
<td>10.9.6.2.6</td>
<td>Semidirect Connections</td>
<td>10-106</td>
</tr>
<tr>
<td>10.9.6.2.7</td>
<td>Direct Connections</td>
<td>10-106</td>
</tr>
<tr>
<td>10.9.6.2.8</td>
<td>Different Design Speeds on Intersecting Highways</td>
<td>10-106</td>
</tr>
<tr>
<td>10.9.6.2.9</td>
<td>At-Grade Terminals</td>
<td>10-106</td>
</tr>
<tr>
<td>10.9.6.2.10</td>
<td>Curvature</td>
<td>10-107</td>
</tr>
<tr>
<td>10.9.6.2.11</td>
<td>Sight Distance</td>
<td>10-109</td>
</tr>
<tr>
<td>10.9.6.2.12</td>
<td>Grade and Profile Design</td>
<td>10-109</td>
</tr>
</tbody>
</table>
10.9.6.13 Vertical Curves 10-111
10.9.6.14 Superelevation and Cross Slope 10-111
10.9.6.15 Gores 10-114
10.9.6.3 Ramp Traveled-Way Widths 10-121
 10.9.6.3.1 Width and Cross Section 10-121
 10.9.6.3.2 Shoulder Widths and Lateral Offset 10-121
 10.9.6.3.3 Shoulders and Curbs 10-122
10.9.6.4 Ramp Terminals 10-123
 10.9.6.4.1 Left-Side Entrances and Exits 10-123
 10.9.6.4.2 Terminal Location and Sight Distance ... 10-123
 10.9.6.4.3 Ramp Terminal Design 10-124
 10.9.6.4.4 Traffic Control 10-124
 10.9.6.4.5 Distance between a Free-Flow Terminal and Structure 10-124
 10.9.6.4.6 Distance between Successive Ramp Terminals 10-126
 10.9.6.4.7 Speed-Change Lanes 10-128
10.9.6.5 Single-Lane Free-Flow Terminals, Entrances 10-128
 10.9.6.5.1 Taper-Type Entrances 10-128
 10.9.6.5.2 Parallel-Type Entrances 10-130
10.9.6.6 Single-Lane Free-Flow Terminals, Exits 10-135
 10.9.6.6.1 Taper-Type Exits 10-135
 10.9.6.6.2 Parallel-Type Exits 10-136
 10.9.6.6.3 Free-Flow Terminals on Curves 10-139
 10.9.6.6.4 Multilane Free-Flow Terminals 10-143
 10.9.6.6.5 Two-Lane Entrances 10-143
 10.9.6.6.6 Two-Lane Exits 10-146
 10.9.6.6.7 Two-Lane Terminals on Curved Alignment ... 10-147
 10.9.6.6.8 Major Forks and Branch Connections 10-147
10.9.7 Other Interchange Design Features 10-150
 10.9.7.1 Testing for Ease of Operation 10-150
 10.9.7.2 Pedestrian and Bicycle Accommodation 10-151
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9.7.3</td>
<td>Managed Lanes and Transit Facilities</td>
<td>10-152</td>
</tr>
<tr>
<td>10.9.7.4</td>
<td>Ramp Metering</td>
<td>10-152</td>
</tr>
<tr>
<td>10.9.7.5</td>
<td>Grading and Landscape Development</td>
<td>10-153</td>
</tr>
<tr>
<td>10.9.7.5.1</td>
<td>Contour Grading Design</td>
<td>10-153</td>
</tr>
<tr>
<td>10.9.7.5.2</td>
<td>Plantings</td>
<td>10-154</td>
</tr>
<tr>
<td>10.9.7.6</td>
<td>Models</td>
<td>10-154</td>
</tr>
</tbody>
</table>

10.10 REFERENCES .. 10-155
LIST OF FIGURES

CHAPTER 1 HIGHWAY FUNCTIONS

Figure 1-1. Framework for Roadway Design Based on Functional Classification and Roadway Context ... 1-6
Figure 1-2. Hierarchy of Movement .. 1-9
Figure 1-3. Relationship of Functionally Classified Systems Serving Traffic Mobility and Land Access for Motor-Vehicle Traffic ... 1-11
Figure 1-4. Typical Road in the Rural Context .. 1-18
Figure 1-5. Typical Street in the Rural Town Context .. 1-18
Figure 1-6. Typical Street in the Suburban Context ... 1-19
Figure 1-7. Typical Street in the Urban Context ... 1-19
Figure 1-8. Typical Street in the Urban Core Context .. 1-20

CHAPTER 2 DESIGN CONTROLS AND CRITERIA

Figure 2-1. Median Driver Reaction Time to Expected and Unexpected Information 2-6
Figure 2-2. 85th-Percentile Driver Reaction Time to Expected and Unexpected Information 2-7
Figure 2-3. Relation between Peak-Hour and Average Daily Traffic Volumes on Arterials in Rural Areas .. 2-15
Figure 2-4. Generalized Speed-Volume-Density Relationships (44) .. 2-28
Figure 2-5. Weaving Sections .. 2-39
Figure 2-6. Simple and Multiple Weaving Sections .. 2-40
Figure 2-7. Estimated Crash Rates by Type of Median—Urban and Suburban Areas (25) 2-47
Figure 2-8. Estimated Crash Rates by Type of Median—Rural Areas (25) 2-48
Figure 2-9. Estimated Crash Rates by Unsignalized and Signalized Access Density—Urban and Suburban Areas (25) ... 2-49
Figure 2-10. Minimum Turning Path for Passenger Car (P) Design Vehicle 2-64
Figure 2-11. Minimum Turning Path for Single-Unit Truck (SU-30 [SU-9]) Design Vehicle 2-65
Figure 2-12. Minimum Turning Path for Single-Unit Truck (SU-40 [SU-12]) Design Vehicle 2-66
Figure 2-13. Minimum Turning Path for Intercity Bus (BUS-40 [BUS-12]) Design Vehicle 2-67
Figure 2-14. Minimum Turning Path for Intercity Bus (BUS-45 [BUS-14]) Design Vehicle 2-68
Figure 2-15. Minimum Turning Path for City Transit Bus (CITY-BUS) Design Vehicle 2-69
Figure 2-16. Minimum Turning Path for Conventional School Bus (S-BUS-36 [S-BUS-11]) Design Vehicle ... 2-70

© 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
CHAPTER 3 ELEMENTS OF DESIGN

Figure 3-1. Illustration of the Method for Measuring Sight Distance. 3-18
Figure 3-2. Geometry for Ball-Bank Indicator ... 3-23
Figure 3-3. Side Friction Factors for Streets and Highways. 3-25
Figure 3-4. Side Friction Factors Assumed for Design ... 3-27
Figure 3-5. Methods of Distributing Superelevation and Side Friction. 3-28
Figure 3-6. Method 5 Procedure for Development of the Superelevation Distribution 3-37
Figure 3-7. Superelevation, Radius, and Design Speed for Low-Speed Street Design
in Urban Areas .. 3-58
Figure 3-8. Diagrammatic Profiles Showing Methods of Attaining Superelevation for a Curve
to the Right .. 3-82
Figure 3-9. Track Width for Widening of Traveled Way on Curves .. 3-94
Figure 3-10. Front Overhang for Widening of Traveled Way on Curves 3-95
Figure 3-11. Widening Components on Open Highway Curves (Two-Lane Highways, One-Way or Two-Way) .. 3-97
Figure 3-12. Derivation of Turning Roadway Widths on Curves at Intersections 3-104
Figure 3-13. Diagram Illustrating Components for Determining Horizontal Sight Distance 3-115
Figure 3-14. Horizontal Sightline Offset (HSO) to Provide Stopping Sight Distance on Horizontal Curves ... 3-116
Figure 3-15. Speed–Distance Curves for a Typical Heavy Truck of 140 lb/hp [85 kg/kW] for Deceleration on Upgrades ... 3-124
Figure 3-16. Speed–Distance Curves for Acceleration of a Typical Heavy Truck of 140 lb/hp [85 kg/kW] on Upgrades and Downgrades ... 3-125
Figure 3-17. Speed–Distance Curves for a Typical Heavy Truck of 200 lb/hp [120 kg/kW] for Deceleration on Upgrades ... 3-127
Figure 3-18. Speed–Distance Curves for Acceleration of a Typical Heavy Truck of 200 lb/hp [120 kg/kW] on Upgrades and Downgrades ... 3-128
Figure 3-19. Speed–Distance Curves for a Typical Recreational Vehicle on the Selected Upgrades (75) ... 3-129
Figure 3-20. Crash Involvement Rate of Trucks for Which Running Speeds Are Reduced below Average Running Speed of All Traffic (25) 3-132
Figure 3-21. Critical Lengths of Grade for Design, Assumed Typical Heavy Truck of 200 lb/hp [120 kg/kW], Entering Speed = 70 mph [110 km/h] ... 3-134
Figure 3-22. Critical Lengths of Grade Using an Approach Speed of 55 mph [90 km/h] for Typical Recreational Vehicle (23) ... 3-135
Figure 3-23. Climbing Lanes on Two-Lane Highways .. 3-138
Figure 3-24. Climbing Lane on Freeways and Multilane Highways 3-145
Figure 3-25. Passing Lanes Sections on Two-Lane Roads .. 3-147
Figure 3-26. Schematic for 2+1 Roadway .. 3-149
Figure 3-27. Schematic for Three-Leg Intersection on a 2+1 Roadway 3-150
Figure 3-28. Schematic for Four-Leg Intersection on a 2+1 Roadway 3-150
Figure 3-29. Schematic for Adjacent Lane Drop Tapers on a 2+1 Roadway 3-151
Figure 3-30. Schematic for Adjacent Lane Addition Tapers on a 2+1 Roadway 3-151
Figure 3-31. Forces Acting on a Vehicle in Motion ... 3-155
Figure 3-32. Basic Types of Emergency Escape Ramps .. 3-158
Figure 3-33. Typical Emergency Escape Ramp .. 3-163
Figure 3-34. Types of Vertical Curves .. 3-165
Figure 3-35. Parameters Considered in Determining the Length of a Crest Vertical Curve to Provide Sight Distance ... 3-167
Figure 3-36. Design Controls for Crest Vertical Curves—Open Road Conditions 3-169
Figure 3-37. Design Controls for Sag Vertical Curves—Open Road Conditions 3-174
Figure 3-38. Sight Distance at Undercrossings ... 3-177
Figure 3-39. Vertical Clearance at Undercrossings .. 3-180
Figure 3-40. Alignment and Profile Relationships in Roadway Design (43) 3-184

CHAPTER 4 CROSS-SECTION ELEMENTS

Figure 4-1. Typical Cross Section, Normal Crown ... 4-3
Figure 4-2. Typical Cross Section, Superelevated ... 4-4
Figure 4-3. Roadway Sections for Divided Highway (Basic Cross Slope Arrangements) 4-5
Figure 4-4. Graded and Usable Shoulders. ... 4-11
Figure 4-5. Typical Highway Curbs ... 4-20
Figure 4-6. Designation of Roadside Regions .. 4-28
Figure 4-7. Typical Frontage Road Arrangements .. 4-43
Figure 4-8. One-Way Frontage Roads, Entrance and Exit Ramps 4-44
Figure 4-9. Typical Outer Separations for Various Types of Arterials 4-46
Figure 4-10. Effects of Depressing the Roadway .. 4-50
Figure 4-11. Effects of Elevating the Roadway ... 4-51
Figure 4-12. Driveway Vertical Alignment and Profile Elements 4-55
Figure 4-13. Typical Two-Lane Tunnel Sections ... 4-61
Figure 4-14. Diagrammatic Tunnel Sections ... 4-63
Figure 4-15. Entrance to a Freeway Tunnel ... 4-64
Figure 4-16. Interior of a Two-Lane Directional Tunnel 4-64
Figure 4-17. Typical Pedestrian Overpasses on Major Highways 4-69
Figure 4-18. Curb Ramp Details ... 4-72
Figure 4-19. Median Refuge .. 4-74
Figure 4-20. Examples of Sidewalk Curb Ramps .. 4-75
Figure 4-21. Midblock Bus Turnout .. 4-80
Figure 4-22. Sawtooth Bus Loading Area .. 4-82
Figure 4-23. Typical Application of Diagonal Back-In/Head-Out Parking 4-84
Figure 4-24. Parking Lane Transition at Intersection .. 4-86
CHAPTER 5 LOCAL ROADS AND STREETS

Figure 5-1. Types of Cul-de-Sacs and Dead-End Streets .. 5-20
Figure 5-2. Alley Turnarounds .. 5-22
Figure 5-3. Actual Curb Radius and Effective Radius for Right-Turn Movements at Intersections . . 5-24
Figure 5-4. Potential Road Network .. 5-28
Figure 5-5. Turnout Design .. 5-35

CHAPTER 6 COLLECTOR ROADS AND STREETS

Chapter 6 has no figures.

CHAPTER 7 RURAL AND URBAN ARTERIALS

Figure 7-1. Climbing Lane on Two-Lane Arterial in a Rural Area ... 7-10
Figure 7-2. Two-Lane Arterial Cross Section with Ultimate Development to a Four-Lane Arterial. . 7-14
Figure 7-3. Methods of Attaining Superelevation on Divided Arterials in Rural Areas 7-23
Figure 7-4. Typical Medians on Divided Arterials in Rural Areas .. 7-24
Figure 7-5. Cross Sectional Arrangements on Divided Arterials in Rural Areas 7-26
Figure 7-6. Cross Sectional Arrangements on Divided Arterials with Frontage Roads 7-27
Figure 7-7. Transition Zone Areas (37) .. 7-33
Figure 7-8. Continuous Two-Way Left-Turn Lane .. 7-43
Figure 7-9. Arterial Street in a Residential Area ... 7-47
Figure 7-10. Divided Arterial Street with Parking Lane .. 7-48
Figure 7-11. Divided Arterial Street with Two-Way Frontage Road 7-63
Figure 7-12. Reserved Bus Lane ... 7-68

CHAPTER 8 FREEWAYS

Figure 8-1. Typical Ground-Level Freeway in a Rural Area .. 8-8
Figure 8-2. Typical Rural Medians ... 8-10
Figure 8-3. Typical Cross Section for Depressed Freeways .. 8-15
Figure 8-4. Restricted Cross Sections for Depressed Freeways .. 8-16
Figure 8-5. Cross Sections with Retaining Walls on Depressed Freeways without Ramps 8-17
Figure 8-6. Depressed Freeway ... 8-18
Figure 8-7. Typical Cross Sections for Elevated Freeways on Structures without Ramps 8-22

© 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
Figure 8-8. Typical and Restricted Cross Sections for Elevated Freeways on Structures with Frontage Roads .. 8-23
Figure 8-9. Typical and Restricted Cross Sections for Elevated Freeways on Embankment 8-24
Figure 8-10. Viaduct Freeway .. 8-25
Figure 8-11. Two-Level Viaduct Freeway .. 8-25
Figure 8-12. Typical Cross Sections for Ground-Level Freeways 8-27
Figure 8-13. Restricted Cross Sections for Ground-Level Freeways 8-27
Figure 8-14. Profile Control—Combination-Type Freeway in Rolling Terrain 8-29
Figure 8-15. Profile Control—Combination-Type Freeway in Level Terrain 8-30
Figure 8-16. Cross-Section Control—Combination-Type Freeway 8-31
Figure 8-17. Combination-Type Freeway .. 8-32
Figure 8-18. Typical Cross Sections for Reverse-Flow Operation 8-33
Figure 8-19. Typical Reverse Roadway Terminals 8-35
Figure 8-20. Reverse-Flow Freeway .. 8-36
Figure 8-21. Dual-Divided Freeway ... 8-38
Figure 8-22. Typical Dual-Divided Freeway .. 8-38
Figure 8-23. Bus Roadway Located between a Freeway and a Parallel Frontage Road 8-41
Figure 8-24. Bus Stops at Freeway Level ... 8-43
Figure 8-25. Bus Stops at Freeway-Level Diamond Interchange 8-44
Figure 8-26. Bus Stops at Street Level on Diamond Interchange 8-46
Figure 8-27. Joint Freeway–Transit Right-of-Way 8-48
Figure 8-28. Typical Sections with Rail Transit in Freeway Median 8-49
Figure 8-29. Example of Transit Station Layout .. 8-50
Figure 8-30. Freeway with Rail Rapid Transit in the Median 8-51

CHAPTER 9 INTERSECTIONS

Figure 9-1. Conflict Points at Various Intersection Types 9-3
Figure 9-2. Physical and Functional Area of an Intersection 9-3
Figure 9-3. Elements of the Functional Area of an Intersection 9-4
Figure 9-4. General Types of Intersections ... 9-12
Figure 9-5. Three-Leg Intersections ... 9-14
Figure 9-6. Channelized Three-Leg Intersections ... 9-16
Figure 9-7. Unchannelized Four-Leg Intersections, Plain and Flared 9-18
Figure 9-8. Channelized Four-Leg Intersections ... 9-20
Figure 9-35. Suggested Left-Turn Lane Warrants Based on Results from Benefit–Cost Evaluations for Intersections on Arterials in Urban Areas \(16\) ... 9-106
Figure 9-36. Suggested Left-Turn Treatment Warrants Based on Results from Benefit–Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas \(16\) ... 9-107
Figure 9-37. Suggested Left-Turn Lane Warrants Based on Results from Benefit–Cost Evaluations for Intersections on Four-Lane Highways in Rural Areas \(16\) ... 9-108
Figure 9-38. 14- to 18-ft [4.2- to 5.4-m] Median Width Left-Turn Design .. 9-111
Figure 9-39. Median Left-Turn Design for Median Width of 16 ft [4.8 m] or More 9-112
Figure 9-40. Examples of Left-Turn Lanes with Negative, Zero, and Positive Offset \(10\) 9-114
Figure 9-41. Parallel and Tapered Offset Left-Turn Lane ... 9-115
Figure 9-42. Four-Leg Intersection Providing Simultaneous Left Turns .. 9-116
Figure 9-43. Above-Minimum Design of Median Openings (Typical Bullet-Nose Ends) 9-123
Figure 9-44. Intersection with Jughandle Roadways for Indirect Left Turns Showing Vehicular Conflict Points .. 9-126
Figure 9-45. Vehicular Movements at an Intersection with Jughandle Roadways 9-127
Figure 9-46. Intersection with Loop Roadways for Indirect Left Turns .. 9-128
Figure 9-47. Diagram of a Displaced Left-Turn Intersection Showing Vehicular Conflict Points 9-129
Figure 9-48. Vehicular Movements at a Displaced Left-Turn Intersection .. 9-129
Figure 9-49. Typical Arrangement of U-Turn Roadways for Indirect Left Turns on Arterials with Wide Medians ... 9-131
Figure 9-50. Vehicular Movements at an Intersection with U-Turn Roadways for Indirect Left Turns 9-132
Figure 9-51. Typical Restricted Crossing U-Turn (RCUT) Intersection ... 9-132
Figure 9-52. Illustration of Pedestrian Path through a Restricted Crossing U-Turn (RCUT) Intersection \(12\) ... 9-133
Figure 9-53. Conflict Diagram for Median U-Turn Configuration Showing Vehicular Conflict Points ... 9-135
Figure 9-54. Conflict Diagram for Restricted Crossing U-Turn Configuration Showing Vehicle Conflict Points ... 9-135
Figure 9-55. Bidirectional (Conventional) and Directional Median Openings 9-137
Figure 9-56. Typical Loon Design to Facilitate U-Turning Traffic on Arterials with Restricted Median Widths \(27\) ... 9-138
Figure 9-57. Dual U-Turn Directional Crossover Design \(27\) .. 9-139
Figure 9-58. Special Indirect U-Turn Roadways with Narrow Medians ... 9-141
Figure 9-59. Example of a Roundabout in an Urban Area ... 9-142
Figure 9-60. Example of a Roundabout in a Rural Area ... 9-142
Figure 9-61. Basic Geometric Elements of a Roundabout ... 9-144

© 2018 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
CHAPTER 10 GRADE SEPARATIONS AND INTERCHANGES

Figure 10-1. Interchange Configurations .. 10-3
Figure 10-2. Factors Influencing Length of Access Control along an Interchange Crossroad . . . 10-10
Figure 10-3. Typical Grade Separation Structures with Closed Abutments 10-17
Figure 10-4. Typical Grade Separation Structure with Open-End Span 10-18
Figure 10-5. Multilevel Grade Separation Structures .. 10-19
Figure 10-6. Lateral Offset for Major Roadway Underpasses 10-23
Figure 10-7. Typical Overpass Structures .. 10-26
Figure 10-8. Flat Terrain, Distance Needed to Achieve Grade Separation 10-29
Figure 10-9. Three-Leg Interchanges with Single Structures 10-33
Figure 10-10. Three-Leg Interchanges with Multiple Structures 10-35
Figure 10-11. Three-Leg Interchange (T-Type or Trumpet) 10-36
Figure 10-12. Three-Leg Interchange Directional Design 10-37
Figure 10-13. Directional Three-Leg Interchange at a River Crossing 10-38
Figure 10-14. Trumpet Freeway-to-Freeway Interchange 10-38
Figure 10-15. Four-Leg Interchanges, Ramps in One Quadrant 10-40
Figure 10-16. Typical Four-Leg Diamond Interchange .. 10-41
Figure 10-17. Diamond Interchanges, Conventional Arrangements 10-43
Figure 10-18. Diamond Interchange Arrangements to Reduce Traffic Conflicts 10-44
Figure 10-19. Diamond Interchanges with Additional Structures 10-45
Figure 10-20. Freeway with a Three-Level Diamond Interchange 10-46
Figure 10-21. X-Pattern Ramp Arrangement .. 10-47
Figure 10-22. Diamond Interchange with Roundabouts at the Crossroad Ramp Terminals 10-47
Figure 10-23. Underpass Single-Point Diamond Interchange 10-49
Figure 10-24. Typical SPDI Underpass Configuration in Restricted Right-of-Way 10-49

© 2018 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
Figure 10-25. Overpass Layout for an SPDI with a Frontage Road and a Separate U-Turn Movement ... 10-51
Figure 10-26. Underpass SPDI and Overpass SPDI ... 10-52
Figure 10-27. Underpass and Overpass Diverging Diamond Interchanges 10-54
Figure 10-28. Partial Cloverleaf Interchange .. 10-59
Figure 10-29. Four-Leg Interchange, Cloverleaf with Collector–Distributor Roads 10-59
Figure 10-30. Schematic of Partial Cloverleaf Ramp Arrangements, Exit and Entrance Turns 10-61
Figure 10-31. Four-Leg Interchange (Partial or Two-Quadrant Cloverleaf with Ramps before Main Structure) ... 10-62
Figure 10-32. Four-Leg Interchange (Partial or Two-Quadrant Cloverleaf with Ramps before Main Structure) ... 10-63
Figure 10-33. Directional Interchanges with Weaving Areas .. 10-65
Figure 10-34. Directional Interchanges with No Weaving .. 10-66
Figure 10-35. Directional Interchanges with Multilevel Structures 10-68
Figure 10-36. Directional Interchange, Two Semidirect Connections 10-69
Figure 10-37. Four-Level Directional Interchange ... 10-70
Figure 10-38. Four-Level Directional Interchange ... 10-70
Figure 10-39. Directional Interchange with Semidirect Connection and Loops 10-71
Figure 10-40. Offset Interchange via Ramp Highway ... 10-72
Figure 10-41. Four-Leg Interchange, Diamond with a Direct Connection 10-73
Figure 10-42. Four-Leg Interchange, Cloverleaf with a Semidirect Connection 10-74
Figure 10-43. Cloverleaf Interchange with Semidirect Connection 10-75
Figure 10-44. Complex Interchange Arrangement .. 10-76
Figure 10-45. Adaptability of Interchanges on Freeways as Related to Types of Intersecting Facilities .. 10-79
Figure 10-46. Widening for Divisional Island at Interchanges 10-81
Figure 10-47. Interchange Spacing as Measured between Successive Crossroads (18) 10-82
Figure 10-48. Arrangement of Exits between Successive Interchanges 10-83
Figure 10-49. Interchange Forms to Maintain Route Continuity 10-84
Figure 10-50. Collector–Distributor Road on Major–Minor Roadway Overlap 10-85
Figure 10-51. Schematic of Basic Number of Lanes ... 10-87
Figure 10-52. Typical Examples of Lane Balance ... 10-88
Figure 10-53. Coordination of Lane Balance and Basic Number of Lanes 10-89
Figure 10-54. Alternative Methods of Reducing or Dropping Auxiliary Lanes 10-91
Figure 10-55. Coordination of Lane Balance and Basic Number of Lanes through Application of Auxiliary Lanes .. 10-92
Figure 10-56. Auxiliary Lane Dropped at Two-Lane Exit ... 10-93
Figure 10-57. Interchange Forms with One and Two Exits ... 10-98
Figure 10-58. Two-Lane Crossroad Designs to Discourage Wrong-Way Entry 10-100
Figure 10-59. Divided Crossroad Designs to Discourage Wrong-Way Entry 10-101
Figure 10-60. General Types of Ramps .. 10-104
Figure 10-61. Ramp Shapes .. 10-108
Figure 10-62. Development of Superelevation at Free-Flow Ramp Terminals 10-113
Figure 10-63. Typical Exit Gore Area Characteristics .. 10-114
Figure 10-64. Typical Gore Details .. 10-117
Figure 10-65. Traveled-Way Narrowing on Entrance Ramps ... 10-118
Figure 10-66. Gore Area, Single-Lane Exit ... 10-119
Figure 10-67. Gore Area, Major Fork ... 10-119
Figure 10-68. Gore Area, Two-Lane Exit ... 10-120
Figure 10-69. Entrance Terminal ... 10-120
Figure 10-70. Recommended Minimum Ramp Terminal Spacing 10-127
Figure 10-71. Ramp Spacing Dimension ... 10-127
Figure 10-72. Typical Single-Lane Entrance Ramps ... 10-129
Figure 10-73. Exit Ramps—Single Lane ... 10-137
Figure 10-74a. Layout of Taper-Type Terminals on Curves (U.S. Customary) 10-140
Figure 10-74b. Layout of Taper-Type Terminals on Curves (Metric) 10-141
Figure 10-75. Parallel-Type Ramp Terminals on Curves .. 10-142
Figure 10-76. Typical Two-Lane Entrance Ramps ... 10-145
Figure 10-77. Two-Lane Exit Terminals .. 10-146
Figure 10-78. Major Forks ... 10-148
Figure 10-79. Branch Connections .. 10-149
Figure 10-80. Diagram of Freeway Configuration with Closely Spaced Ramps but Limited Weaving .. 10-151
LIST OF TABLES

CHAPTER 2 DESIGN CONTROLS AND CRITERIA

Table 2-1. Corresponding Design Speeds in Metric and U.S. Customary Units 2-25
Table 2-2. General Definitions of Levels of Service .. 2-36
Table 2-3. Guidelines for Selection of Design Levels of Service ... 2-37
Table 2-4a. Design Vehicle Dimensions (U.S. Customary Units) .. 2-56
Table 2-4b. Design Vehicle Dimensions (Metric Units) ... 2-57
Table 2-5a. Minimum Turning Radii of Design Vehicles (U.S. Customary Units) 2-59
Table 2-5b. Minimum Turning Radii of Design Vehicles (Metric Units) 2-60

CHAPTER 3 ELEMENTS OF DESIGN

Table 3-1. Stopping Sight Distance on Level Roadways ... 3-4
Table 3-2. Stopping Sight Distance on Grades ... 3-6
Table 3-3. Decision Sight Distance .. 3-8
Table 3-4. Passing Sight Distance for Design of Two-Lane Highways 3-11
Table 3-5. Minimum Passing Zone Lengths to Be Included in Traffic Operational Analyses 3-14
Table 3-6. Average Running Speeds .. 3-30
Table 3-7. Minimum Radius Using Limiting Values of e and f .. 3-34
Table 3-8. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{max} = 4\%$ 3-42
Table 3-9. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{max} = 6\%$ 3-43
Table 3-10. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{max} = 8\%$ 3-45
Table 3-11. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{max} = 10\%$ 3-47
Table 3-12. Minimum Radii for Design Superelevation Rates, Design Speeds, and $e_{max} = 12\%$ 3-49
Table 3-13. Minimum Radii and Superelevation for Low-Speed Streets in Urban Areas 3-54
Table 3-14. Lengths of Circular Arcs for Different Compound Curve Radii 3-61
Table 3-15. Adjustment Factor for Number of Lanes Rotated ... 3-64
Table 3-16a. Superelevation Runoff L_r (ft) for Horizontal Curves 3-66
Table 3-16b. Superelevation Runoff L_r (m) for Horizontal Curves 3-68
Table 3-17. Limiting Superelevation Rates ... 3-73
Table 3-18. Maximum Radius for Use of a Spiral Curve Transition 3-75
Table 3-19. Desirable Length of Spiral Curve Transition .. 3-78
Table 3-20. Superelevation Rates Associated with Large Relative Gradients 3-79

© 2018 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
Table 3-21. Tangent Runout Length for Spiral Curve Transition Design ... 3-80
Table 3-22. Minimum Lengths of Spiral for Intersection Curves .. 3-89
Table 3-23. Length of Circular Arc for a Compound Intersection Curve When Followed by a Curve of One-Half Radius or Preceded by a Curve of Double Radius .. 3-91
Table 3-24a. Calculated and Design Values For Traveled Way Widening on Open Highway Curves (Two-Lane Highways, One-Way Or Two-Way) (U.S. Customary) .. 3-99
Table 3-24b. Calculated and Design Values for Traveled Way Widening on Open Highway Curves (Two-Lane Highways, One-Way or Two-Way) (Metric) .. 3-100
Table 3-25. Adjustments for Traveled Way Widening Values on Open Highway Curves (Two-Lane Highways, One-Way or Two-Way) .. 3-102
Table 3-26a. Derived Pavement Widths for Turning Roadways for Different Design Vehicles (U.S. Customary) ... 3-106
Table 3-26b. Derived Pavement Widths for Turning Roadways for Different Design Vehicles (Metric) ... 3-107
Table 3-27. Design Widths of Pavements for Turning Roadways .. 3-109
Table 3-28. Design Width Modifications for Edge Conditions of the Traveled Way for Turning Roadways ... 3-110
Table 3-29. Cases and Traffic Conditions by Design .. 3-111
Table 3-30. Cases and Traffic Conditions for Larger Vehicles .. 3-111
Table 3-31. Range of Usable Shoulder Widths or Equivalent Lateral Clearances outside of Turning Roadways, Not on Structure ... 3-113
Table 3-32. Optimal Passing Lane Lengths for Traffic Operational Efficiency (30, 31) 3-149
Table 3-33. Recommended Lengths of Turnouts Including Taper ... 3-153
Table 3-34. Rolling Resistance of Roadway Surfacing Materials ... 3-156
Table 3-35. Design Controls for Crest Vertical Curves Based on Stopping Sight Distance 3-170
Table 3-36. Design Controls for Crest Vertical Curves Based on Passing Sight Distance 3-172
Table 3-37. Design Controls for Sag Vertical Curves .. 3-176

CHAPTER 4 CROSS-SECTION ELEMENTS

Table 4-1. Normal Traveled-Way Cross Slope .. 4-7
Table 4-2. Design Guidelines and Countermeasures to Reduce Median-Related Crashes on High-Speed Roadways (36) .. 4-42
Table 4-3. Noise-Abatement Criteria for Various Land Uses (27) ... 4-48
Table 4-4. Driveway Width Guidelines (31) ... 4-54
CHAPTER 5 LOCAL ROADS AND STREETS

Table 5-1. Minimum Design Speeds for Local Roads in Rural Areas ... 5-3
Table 5-2. Maximum Grades for Local Roads in Rural Areas ... 5-4
Table 5-3. Design Controls for Stopping Sight Distance and for Crest and Sag Vertical Curves 5-5
Table 5-4. Design Controls for Crest Vertical Curves Based on Passing Sight Distance 5-5
Table 5-5. Minimum Width of Traveled Way and Shoulders for Two-Lane Local Roads in Rural Areas ... 5-7
Table 5-6. Minimum Clear Roadway Widths and Design Loadings for New and Reconstructed Bridges .. 5-9
Table 5-7. Maximum Grades for Recreational Roads ... 5-30
Table 5-8. Design Controls for Stopping Sight Distance and for Crest and Sag Vertical Curves—Recreational Roads ... 5-31
Table 5-9. Guidelines for Minimum Radius of Curvature for New Construction of Unpaved Surfaces with No Superelevation [adapted from (20)] 5-32
Table 5-10. Design Controls for Passing Sight Distance for Crest Vertical Curves—Recreational Roads ... 5-33
Table 5-11. Widths of Traveled Way and Shoulders—Recreational Roads 5-34
Table 5-12. Design Speeds for Resource Recovery and Local Service Roads 5-38

CHAPTER 6 COLLECTOR ROADS AND STREETS

Table 6-1. Minimum Design Speeds for Collectors in the Rural Context 6-3
Table 6-2. Maximum Grades for Collectors in Rural Areas ... 6-4
Table 6-3. Design Controls for Stopping Sight Distance and for Crest and Sag Vertical Curves ... 6-5
Table 6-4. Design Controls for Crest Vertical Curves Based on Passing Sight Distance 6-5
Table 6-5. Minimum Width of Traveled Way and Shoulders ... 6-6
Table 6-6. Minimum Roadway Widths and Design Loadings for New and Reconstructed Bridges .. 6-8
Table 6-7. Maximum Grades for Collectors in the Urban and Urban Core Contexts 6-15

CHAPTER 7 RURAL AND URBAN ARTERIALS

Table 7-1. Minimum Sight Distances for Arterials in Rural Areas .. 7-5
Table 7-2. Maximum Grades for Arterials in Rural Areas ... 7-6
Table 7-3. Minimum Width of Traveled Way and Usable Shoulder for Arterials in Rural Areas ... 7-7
Table 7-4a. Maximum Grades for Urban Arterials, U.S. Customary .. 7-38
Table 7-4b. Maximum Grades for Urban Arterials, Metric ... 7-38
CHAPTER 8 FREEWAYS

Table 8-1. Maximum Grades for Freeways in Rural and Urban Areas .. 8-5

CHAPTER 9 INTERSECTIONS

Table 9-1. Key Dimensions of Specific Types of Nonmotorized Users .. 9-8
Table 9-2. Motor Vehicle Level of Service Definitions for Signalized Intersections (49) 9-10
Table 9-3. Comparison of Roundabout Types (47) ... 9-28
Table 9-4. Length of Sight Triangle Leg—Case A, No Traffic Control 9-41
Table 9-5. Adjustment Factors for Intersection Sight Distance Based on Approach Grade 9-42
Table 9-6. Time Gap for Case B1, Left Turn from Stop ... 9-44
Table 9-7. Design Intersection Sight Distance—Case B1, Left Turn from Stop 9-46
Table 9-8. Time Gap for Case B2—Right Turn from Stop ... 9-47
Table 9-9. Design Intersection Sight Distance—Case B2, Right Turn from Stop 9-48
Table 9-10. Time Gap for Case B3, Crossing Maneuver from the Minor Road 9-49
Table 9-11. Design Intersection Sight Distance—Case B3, Crossing Maneuver 9-50
Table 9-12. Case C1—Crossing Maneuvers from Yield-Controlled Approaches, Length of Minor Road
Leg and Travel Times ... 9-52
Table 9-13. Length of Sight Triangle Leg along Major Road—Case C1, Crossing Maneuver at Yield-Controlled Intersections ... 9-54
Table 9-14. Time Gap for Case C2, Left or Right Turn at Yield-Controlled Intersections 9-55
Table 9-15. Design Intersection Sight Distance—Case C2, Left or Right Turn at Yield-Controlled Intersections .. 9-55
Table 9-16. Time Gap for Case F, Left Turns from the Major Road .. 9-57
Table 9-17. Intersection Sight Distance—Case F, Left Turn from the Major Road 9-57
Table 9-18. Maximum Algebraic Difference in Cross Slope at Turning Roadway Terminals ... 9-89
Table 9-19. Stopping Sight Distance for Turning Roadways .. 9-91
Table 9-20. Desirable Lane Change and Deceleration Distances .. 9-96
Table 9-21. Calculated Storage Lengths to Accommodate the 50th Percentile Critical Gap (16) ... 9-98
Table 9-22. Calculated Storage Lengths to Accommodate the 85th Percentile Critical Gap (16) ... 9-99
Table 9-23. Queue Storage Length Adjustments for Trucks (48) .. 9-99
Table 9-24. Suggested Left-Turn Lane Guidelines Based on Results from Benefit–Cost Evaluations for Unsignalized Intersections on Arterials in Urban Areas (16) .. 9-106
Table 9-25. Suggested Left-Turn Treatment Guidelines Based on Results from Benefit–Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas (16) 9-107

© 2018 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
Table 9-26. Suggested Left-Turn Lane Guidelines Based on Results from Benefit–Cost Evaluations for Unsignalized Intersections on Four-Lane Highways in Rural Areas (16) .. 9-108
Table 9-27. Swept Path Widths for 90-Degree Left Turns (23) ... 9-117
Table 9-28. Minimum Designs for U-Turns .. 9-140
Table 9-29. Design Sight Distance for Combination of Motor Vehicle and Train Speeds; 73.5-ft [22.4-m] Truck Crossing a Single Set of Tracks at 90 Degrees .. 9-167

CHAPTER 10 GRADE SEPARATIONS AND INTERCHANGES

Table 10-1. Guide Values for Ramp Design Speed as Related to Highway Design Speed 10-105
Table 10-2. Guidelines for Maximum Ramp Grade ... 10-110
Table 10-3. Minimum Length of Taper beyond an Offset Nose .. 10-118
Table 10-4. Minimum Acceleration Lane Lengths for Entrance Terminals with Flat Grades of Less Than 3 Percent .. 10-132
Table 10-5. Speed Change Lane Adjustment Factors as a Function of Grade 10-133
Table 10-6. Minimum Deceleration Lane Lengths for Exit Terminals with Flat Grades of Less Than 3 Percent ... 10-138
PREFACE

Public works projects of all scales are more sensitive to funding than ever before. In many cases, cost magnitude and cost effectiveness play increasingly large roles in scoping projects. Often, reconstruction projects are limited in scope or available funding, or may be affected by physical constraints or social or environmental considerations. In some locations, especially constrained locations, designing to the criteria recommended herein simply is not feasible. Adaptive, flexible, and cost-effective designs customized to each project context are encouraged. Flexibility in the application of design criteria herein is recommended to encourage a sustainable approach to highway design decision making by weighing and balancing choices among the environmental, economic, and social aspects while meeting the project’s performance objectives.

Designers should recognize the joint use of transportation corridors by motorists, pedestrians, bicyclists, public transit, and freight vehicles. Designers are encouraged to consider not only vehicular movement, but also movement of people, distribution of goods, and provision of essential services. A more comprehensive transportation program is thereby emphasized.

A Policy on Geometric Design of Highways and Streets provides geometric design guidance based on established practices that are supplemented by recent research. This document is intended as a comprehensive reference manual to assist in administrative, planning, and educational efforts pertaining to design formulation. This policy is not intended to be a prescriptive design manual that supersedes engineering judgment by the knowledgeable design professional.

The design concepts and criteria in this policy are intended for use when designing new construction projects on new location or designing reconstruction projects on an existing location. Projects on existing roads particularly call for a flexible, performance-based approach to design. The policy also encourages flexible design, which emphasizes the role of the planner and designer in determining appropriate design dimensions based on project-specific conditions and existing and future roadway performance more than on meeting specific nominal design criteria. This publication is not intended as a policy for resurfacing, restoration, or rehabilitation (3R); traffic engineering; safety; and preventive maintenance-type projects that include very minor or no roadway work. When designing 3R projects, the designer should refer to the design guidelines presented in _NCHRP Report 876, Guidelines for Integrating Safety and Cost-Effectiveness into Resurfacing, Restoration, and Rehabilitation (3R) Projects_, for more information. _NCHRP Report 876_ was developed as a replacement for _TRB Special Report 214, Designing Safer Roads: Practices for Resurfacing, Restoration, and Rehabilitation_.

The fact that new design values and concepts are presented herein does not imply that existing streets and highways are unsafe, nor does it mandate the initiation of improvement projects. The highway, vehicle, and individual users are all integral parts of transportation safety and efficiency. While this document primarily addresses geometric design issues, a properly equipped and maintained vehicle and reasonable and prudent performance by the user are also needed for safe and efficient operation of the transportation facility.
Chapter 1 of this edition has been rewritten entirely and provides a new framework for geometric design. It expands the land use contexts from two (urban or rural) to five (rural, rural town, suburban, urban, or urban core). It emphasizes design flexibility provided in this policy and encourages designers to take advantage of that flexibility. Chapter 1 also introduces a performance-based approach to geometric design which, when used, will allow practitioners to quantify and convey design tradeoffs in meaningful terms to a broad audience and, ultimately, for consideration by decision makers.

Design values are presented in this document in both U.S. customary and metric units and were developed independently within each system. The relationship between the U.S. customary and metric values is neither an exact (soft) conversion nor a completely rationalized (hard) conversion; and the use of brackets around metric values does not indicate as in some AASHTO publications that these are soft conversions. The U.S. customary values are those that would have been used if the policy had been presented exclusively in U.S. customary units; the metric values are those that would have been used had the policy been presented exclusively in metric units. Therefore, the user is advised to work entirely in one system and not attempt to convert directly between the two.

This publication supersedes the 2011 AASHTO publication of the same name. Because the concepts presented cannot be completely covered in this one document, references to additional literature are given at the end of each chapter. These references include works that were cited or consulted in the development of the chapter or are of interest to the discussion of the subject matter therein. Of these documents, only those balloted and published by AASHTO represent AASHTO policy.

The Committee on Design and the Technical Committee on Geometric Design would like to extend a special thank you to Doug Harwood of MRI Global for his technical editing expertise during the development of the seventh edition.
1 New Framework for Geometric Design

1.1 INTRODUCTION

This seventh edition of the *A Policy on Geometric Design of Highways and Streets* incorporates recent research that provides insight into the effect of specific geometric design elements of roads and streets for all transportation modes. This edition of the policy also introduces the consideration of five specific context classifications as an element of the geometric design process and emphasizes the consideration of multimodal needs in design. Together, context classification and functional classification constitute a new framework for geometric design. The policy also encourages flexible design, which emphasizes the role of the planner and designer in determining appropriate design dimensions based on project-specific conditions and existing and future roadway performance more than on meeting specific nominal design criteria. In the past, designers sought to assure good traffic operational and safety performance for the design of specific projects primarily by meeting the dimensional design criteria in this policy. This approach was appropriate in the past because the relationship between design dimensions and future performance was poorly understood. Traditional applications of this policy took the approach that, if the geometric design of a project met or exceeded specific dimensional design criteria, it would be likely to perform well. In some cases, this may have led to overdesign, constructing projects that were more costly than they needed to be or were inappropriate for the roadway context.

Recent research has improved our knowledge of the relationship between geometric design features and traffic operations for all modes of transportation and has developed new knowledge about the relationship of geometric design features to crash frequency and severity. Much of the recently developed information about assessing traffic operations for all transportation modes is presented in the TRB *Highway Capacity Manual* (25), while the recently developed information about estimating future crash frequencies and severities is presented in the AASHTO *Highway Safety Manual* (4, 7).

This edition of the policy introduces new definitions of project types—new construction, reconstruction, and projects on existing roads—and explains how design flexibility is provided for each project type as part of the project development process.
Project development is broader than just geometric design and should consider many factors for all transportation modes, including:

- Project purpose and need
- Existing and expected future traffic operational efficiency
- Existing and expected future crash frequency and severity
- Construction cost
- Future maintenance cost
- Context classification
- Service and ease of use for each transportation mode:
 - automobile
 - bicycle
 - pedestrian
 - transit
 - truck
- Accessibility for persons with disabilities
- Available right-of-way
- Existing and potential future development
- Operational flexibility during future incidents and maintenance activities
- Stakeholder input
- Community goals and plans and potential community impacts
- Historical structures
- Impacts on the natural environment:
 - air quality
 - noise
 - wetlands preservation
 - wildlife and endangered species
- Preservation of archeological artifacts

These factors are not necessarily presented in priority order and, indeed, the priorities placed on them vary from project to project. None of these factors is uniquely important and geometric design should complement other aspects of project development in seeking the appropriate balance among their potential effects.
A 2016 resolution of the AASHTO Standing Committee on Highways (8) has directed that geometric design policy and practice should become more flexible and performance-based to more fully address the needs of all transportation modes and the challenges to transportation agencies created by funding and right-of-way constraints. This AASHTO resolution is consistent with the direction set by Federal legislation in the Fixing America’s Surface Transportation (FAST) Act (14). This seventh edition of the policy takes a first step toward implementing a new framework for geometric design to accomplish this goal. There was already substantial flexibility in the geometric design guidance presented in previous editions of this policy, and this seventh edition expands that flexibility. This chapter explains how the flexible, performance-based approach should be applied and describes how Chapters 2 through 10, together with other available resources, can be used in implementing the new framework and the performance-based approach for all transportation modes. The next edition of this policy will more fully incorporate this approach, with full implementation of the new framework and the flexible, performance-based approach in each chapter.
Index

2+1 roadways; see Two-lane highways

Acceleration
Distance, 2-86–87
Effects of grade, 3-12
Intersections, 9-53, 9-63
Lateral, 3-19
Lanes; see Speed-change lanes
Rates, 2-86–87

Acceleration lanes; see Speed-change lanes

Accelerometer, 3-24

Access control; see Control of access and access management

Access management; see Control of access and access management

Accessibility; see Persons with disabilities

Accidents; see Safety

Aesthetics
Alignment
Combination, horizontal and vertical, 3-121
Horizontal, 3-62–63
Vertical, 3-164
Interchanges, 10-12–13
Landscaping, 3-186–187, 9-143
Medians, 4-40
Recreational roads, 5-27–28
Sideslopes, 4-29–31

Alignment—Combinations of
Arterials; see Arterials
Collectors, 6-3, 6-14
Coordination in design, 3-182–186, 4-6, 4-8
Freeways, 8-7–8
General design controls, 3-181–182

Horizontal; see Alignment—Horizontal
Horizontal and vertical, general considerations of, 3-180–181
Interchanges; see Interchanges
Intersections at grade, 9-1–3
Local roads and streets; see Local roads and streets
Sight distance, 9-35
Vertical; see Alignment—Vertical

Alignment—Horizontal

Aesthetics; see Aesthetics

Arterials, 7-11
Changes in, 6-3, 7-19
Collectors; see Collector roads and streets
Combination with vertical alignment, 4-6
Controls, 3-119–121
Curves; see Curves—Horizontal

Design considerations, 3-31–36, 4-6
Design speed, 3-19–20
Divided highways, 3-87
Effect of grade on, 3-35–36
Freeways, 8-7–8
Friction factor, 3-21–30
General considerations, 3-20
Interchanges; see Interchanges
Intersections at grade, 9-1–3
Minimum radius, 3-33–35
Off-tracking, 3-91–97
Pavement widening; see Traveled way
Ramps; see Ramps
Recreational roads, 5-31–32
Residential areas, 3-182
Resource recovery and local service roads; see Local roads and streets
I-2 A Policy on Geometric Design of Highways and Streets

Sharpest curve without superelevation, 3-20
Safety, 3-22–24, 3-33, 3-60
Side friction factor, 3-21–30
Sight distance, 3-113–119; see also Sight distance
Speed-change lanes; see Speed-change lanes
Spiral curves, 3-73–74; see also Transitions
Superelevation, 3-20–21, 3-31–52; see also Superelevation
Theoretical considerations, 3-19–20
Transitions; see Transitions
Traveled way widening, 3-97–103

Alignment—Vertical
Arterials, 7-5, 7-11
Broken back, 3-121, 3-179–180
Collectors; see Collector roads and streets
Combination with horizontal, 4–6
Critical length of grade; see Grades
Curves; see Curves—Vertical
Design, 3-141–176
Escape ramps; see Ramps
Freeways, 8–7–8
General design controls for, 3-179–180
Grades, 3-122–136; see also Grades
Grade separations, 3-177
Interchanges; see Interchanges
Intersections; see Intersections
Local roads and streets; see Local roads and streets
Railroad–highway grade crosings; see Railroad–highway grade crosings
Ramps; see Ramps
Recreational roads, 5-30
Resource recovery and local service roads; see Local roads and streets
Safety, 3-137
Terrain, 3-121–122
Traveled way edge, design of smooth profiles for, 3–85
Vertical curves; see Curves—Vertical

Alleys, 5-20–21

Americans with Disabilities Act Accessibility Guidelines, 1-24–25, 4-70; see also Persons with disabilities

Approach nose
Bullet, 9-113, 9-119–123
Curbs, 9-76–77
Offset, 9-76
Superelevation, 9-84–89
Taper, 9-113
Treatment; see Markings

Arterials, 7-1–2; see also Divided highways, Multilane highways
Bikeways, 7-30
Bus lanes, 7-68
Bus stops, 7-30–31, 7-66–67
Bus turnouts, 7-30–31, 7-67–68
Borders and sidewalks, 7-25, 7-46–47
Clearances, 7-9, 7-51
Cross section, 7-6–8, 7-14, 7-23–27
Cross slope, 4-7, 7-6, 7-15, 7-38–39
Curbs, 7-40
Definitions, 7-1
Directional lane usage, 7-59–62
Divided, 7-11–28; see also Divided highways
Drainage, 7-45
Examples, 7-10, 7-42–43, 7-46–48
Frontage roads; see Frontage roads
Grade separations and interchanges, 7-63–64; see also Interchanges
Intersections, 7-28–29, 7-56
Lane width, 7-15, 7-24–26, 7-39–40
Left turns, 7-13, 7-15, 7-18, 7-37, 7-55, 7-57, 9-106
Medians, 7-17–18, 7-28, 7-40–45
Parking, 4-86, 7-45–46, 7-58
Right turns, 7-39–40, 7-53, 7-55, 7-57
Rural, 1-12–1-13
access management, 7-29–30
alignment, 7-5, 7-11, 7-18–19
characteristics, 7-2–3
clear zones, 7-8
cross slope, 7-6, 7-15

© 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
design speed, 7-3
design traffic volumes, 7-3–4
divided, 7-11–28
erosion control, 7-9
grades, 7-5–6
lateral offset, 7-8
level of service, 7-4
lighting, 7-31–32
number of lanes, 7-7
passing, 7-9–11
railroad–highway grade crossings, 7-31
rest areas, 7-32
right-of-way, 7-7–8
roadside design, 7-8
roadway width, 7-6–7
sight distance, 7-4–5
structures, 7-9
superelevation, 7-6, 7-20–24
traffic control devices, 7-9
Rural town context, 7-34, 7-32–34
Shoulders, 7-16, 7-30, 7-40
Signal control, 7-57
Speed, 2-26–27, 7-3, 7-36; see also Design speed
Traffic control devices, 7-9, 7-57; see also Traffic control devices
Transit facilities, 7-65–68
Ultimate development of four-lane, 7-11–14
Undivided, 7-13–14
Urban, 7-34–35
access management, 7-51–54
alignment, 7-37
bicycle facilities, 7-54
clear zones, 7-49
cross slope, 7-38–39
design speed, 7-36
design traffic volumes, 7-36
driveways, 7-53
erosion control, 7-64
general, 7-35–36
grades, 7-37–38
lane width, 7-39–40
lateral offset, 7-49–50
level of service, 7-37
lighting, 7-64–65
number of lanes, 7-40
pedestrians, 7-54–56
railroad–highway grade crossings, 7-51
right-of-way width, 7-48–49
roadside design, 7-49
roadway width, 7-39
sight distance, 7-37
structures, 7-50–51
superelevation, 7-38
traffic barriers, 7-51
Utilities, 7-56
Arterial systems
Characteristics, 1-12–15, 7-2–3
Minor, 1-11–12, 7-35
Principal, Rural, 1-12
Urban, 1-14–15
At-grade intersections; see Intersections
Auxiliary lanes
At interchanges, 4-3–4, 10-90–93
At intersections, 4-3–4
Bus turnouts, 4-80–81, 7-68
Bypass lanes, 9-17–18, 9-105–109, 9-147
Climbing lanes; see Climbing lanes
Cross slope, 4-7
Definition, 10-90
Left-turn, 9-105–117
Length, 9-94, 10-123, 10-128
Median lanes; see Median lanes
Midblock, 9-158–159
Offset left-turn, 9-113–115
On overpasses, 10-27
Passing lanes; see Passing lanes
Right-turn, 9-15, 9-60–65
Speed-change lanes; see Speed-change lanes
Storage, 9-96–99
Taper, 10-90–94
Warrants, 9-93
Width, 9-92
© 2018 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
Average daily traffic (ADT); see Traffic
Ball-bank indicator, 3-23
Barriers; see Traffic barriers or Noise
Benefit analyses; see Economic evaluation
Benefit/cost ratio; see Economic evaluation
Bicycle facilities, 4-77, 6-7, 6-19
Bicycle lane considerations, 2-54
Borders
Arterials, 7-25, 7-46–47
Collectors, 4-1, 6-19
Freeways; see Freeways
Function, 4-65
Local roads and streets, 5-17
Sidewalks; see Sidewalks
Width, 6-19
Braking; see also Drivers
Brake reaction time, 3-2–3
Distance, 3-3–6
Effects of grades, 3-5–6; see also Grades
Buses; see also Public transit
Arterials, 4-80–82, 7-66–68
Classification, 2-19–20
Design vehicles, 2-55–60, 2-63, 2-67–72
Freeways, 4-79–80; see also Freeways
Lanes, 7-68
Park-and-ride facilities, 4-82–84
Stops, 7-66–67, 8-42–47
Turnouts, 4-79–82
Capacity, see also Traffic
ADT, 2-13–18
Analysis, 2-29–30, 7-36
Applications, 2-29–30
Arterials, 7-3–7, 7-36
Climbing lanes, 3-139–144
Definition, 2-29
Degree of congestion, see Degree of congestion
Design, 2-30–33
DHV, 2-13–18
Effect of alignment and profile, 2-34
Entrance terminal; see Terminals
Exit terminal; see Terminals
Flow rate, 2-37–2-38
Freeways; see Freeways
General characteristics, 2-29
Highway factors, 2-33, 2-41
Interchanges; see Interchanges
Interrupted flow, 2-31
Intersections, 9-9–10; see also Intersections
Lateral offsets, 4-11, 4-18
Level of service, 2-36–2-37; see also Levels of service
Parking, 2-37, 4-85–87
Passing lanes, 3-145–149
Passing opportunities, 3-12–13, 3-145–154
PHF (peak-hour factor), 2-35–36
Ramps and ramp terminals, 2-34–35
Reverse-flow operations, 7-60–62
Roadside interference, 4-52
Shoulders, 4-11
Terrain type; see Topography
Trucks, 3-142–144
Two-lane highways, 2-18–20
Weaving sections, 2-32, 2-34; see also Weaving sections
Width of lanes, 4-9–10
Work zones, 3-195
Channelization
Advantages, 9-67
Definition, 9-12
Design principles, 9-68–69
Examples, 9-16–17, 9-20–23
Islands, 9-70–72
Median lanes; see Median lanes
Pavement markings; see Markings
Safety, 9-67
Warrants, 9-69
Channels—drainage, 4-23–28; see also Drainage
Linings, 4-24–28; see also Erosion control
Medians, 4-5–6
Classification, context, 1-16–22
 Rural context, 1-11–13, 1-17, 1-20
 Rural town context, 1-16–17, 1-20
 Suburban context, 1-17, 1-21
 Urban context, 1-11, 1-14–17, 1-21–22
 Urban core context, 1-17, 1-22

Classification, functional, 1-7–16
 Access control and mobility needs, 1-10–11
 As a design type, 1-16
 Concept, 1-5–8
 Movement, 1-8–9
 Systems, 1-11–16
 rural areas, 1-11–13
 urban areas, 1-11, 1-14–16

Clear zones, 4-17–18

Clearances
 At tunnels, 4-62
 At walls, 3-113, 4-60, 8-14
 Structures, 3-113, 5-9, 5-35–36, 6-8, 6-20, 7-9, 7-50–51, 8-5
 Divided highways, on left, 3-184
 Grade separation structures; see Grade separations
 Guardrail, 10-24
 Horizontal, 4-49
 Luminaire supports (poles), 3-190
 On arterials; see Arterials
 On collectors; see Collector roads and streets
 On curves, for sight distance, 3-180
 On local roads and streets; see Local roads and streets
 Sign supports, 5-9
 To building line, 8-21
 To bus transit facilities, 7-65–68
 To obstructions, 8-14
 Turning roadways, 3-113
 Underpasses, 3-180, 10-24–25
 Vertical, 1-5
 on arterials; see Arterials
 on collectors; see Collector roads and streets
 on freeways, 8-5

 on local roads and streets; see Local roads and streets
 on recreational roads, 5-30–33
 on resource recovery and local service roads; see Local roads and streets

Climbing lanes
 Arrangements, 3-138, 3-145
 Beginning of, 3-140–141
 Critical length of grade, 3-139–140, 3-143
 Cross slope; see Cross slope
 Definition, 3-137
 Ending of, 3-141
 Examples, 7-10
 General, 3-137
 On freeways, 3-144–145, 8-4
 On multilane highways, 3-144–145, 7-19–20
 On two-lane highways, 3-137–139, 7-19
 Recreational vehicles; see Recreational vehicles
 Shoulders on, 3-141, 7-10
 Signing, 3-141
 Taper, 3-141
 Trucks, 3-139–144, 7-10
 Warrants, 3-140–143
 Width, 3-141

Cloverleafs; see Interchanges

Collector roads and streets; see also Local roads and streets
 Functional classification, 1-5, 1-16, 6-1
 General design considerations, 6-1–2
 Parking on, 4-86, 6-7, 6-16–17
 Rural areas, 1-13
 alignment, 6-3
 bicycle facilities, 6-7
 clearances, 6-8
 clear zones, 4-17, 6-8
 cross slope, 6-4
 curbs, 6-7
 design speed, 6-2–3, 6-11–12
 design traffic volumes, 6-3
 drainage, 6-11
 driveways, 4-54
erosion control and landscaping, 6-11
foreslopes, 6-9
intersection design, 6-9–10
grades, 6-4
lane width, 6-6
lateral offset, 6-8–9
levels of service, 6-3
medians, 6-7
number of lanes, 6-6
railroad–highway grade crossings, 6-10
right-of-way width, 6-7
sight distance, 6-4–5
signs and markings, 6-12
shoulder width, 6-6
structures, 6-7–8
superelevation, 4-33, 6-4
traffic control devices, 6-11
vertical clearance, 6-8
width of roadway, 6-6

Urban areas, 1-15, 6-12
alignment, 6-14
alleys; see Alleys
bicycle facilities, 6-19
border area, 4-1, 6-19
clearances, 6-8–9, 6-20–22
clear zones, 4-17, 6-21
cross slope, 6-15
curb return radius, 9-65
curbs, 6-18
cul-de-sacs and turnarounds, 5-19–20
definition, 6-13
design speed, 6-13–6-14
design traffic volume, 6-13–14
drainage, 6-14, 6-17, 6-24
driveways, 4-54, 6-20
erosion control, 6-24
general, 1-15–16, 6-13
grades, 6-14–15
intersection design, 6-22
landscaping, 6-19, 6-24
lane width, 6-16

lateral offset, 4-18, 6-21–22
levels of service, 2-36–37, 6-14
lighting, 6-23–24
medians, 6-17
number of lanes, 6-16
parking lanes, 6-16–17
railroad–highway grade crossings, 6-23
right-of-way width, 6-18–19
sidewalk curb ramps, 4-70–76, 6-20
sidewalks, 6-19–20
sight distance, 6-5, 6-15, 6-23
signs and markings, 6-17, 6-19, 6-22–23
structures, 6-20
superelevation, 4-33, 6-15
traffic control devices, 6-23
utilities, 6-19
vertical clearance, 6-20
width of roadway, 6-16
widths for bridges, 6-20

Rural town context, 6-11–12

Collector–distributor roads; see Interchanges

Congestion; see Degree of congestion

Connections; see Ramps

Construction areas, 3-195

Construction Projects on Existing Roads; see Project types

Context; see Classification, context

Contrasting surfaces

Auxiliary lanes, 9-153
Curb and gutter, 4-22
Islands, 9-75–76
Median lanes, 9-42, 9-113
Ramps; see Ramps
Shoulders, 4-15–16
Turnouts, 4-70

Control devices; see Traffic control devices

Control of access and access management

Arterials, 7-51–54
Benefits, 2-45–49
Classifications, 2-44
Collectors, 6-13
Crossroad, interchanges, 10-8–10
Definition, 2-41, 2-43
Design considerations, 2-43–44, 7-53–54
Driveway control, 2-43, 4-52–55
Freeways; see Freeways
Full, 2-41, 2-43
General, 2-41–44
Interchanges, 10-8–10
Intersections, 9-2, 9-6–7, 9-155
Methods, 2-42, 2-45
Partial, 2-41
Principles, 2-43–44
Safety effects, 2-91–93
Signals, 2-93, 3-193–194
With frontage roads, 4-41–44
Control radii; see Radii
Crossover crown line; see Crown
Cross section
Curbs; see Curbs
Definition, 4-1
Divided highways, 4-13, 7-26
with frontage roads, 7-27
Drainage from shoulders, 4-13–14
Elements, 4-1
collectors, 6-6–7, 6-16–20
Examples, 4-3–5
Freeways; see Freeways
Medians, 4-5–4-6
Shoulders, 4-13–14
Superelevated, 4-32–33
Two-lane rural arterials, 7-14
Typical, 4-3–4
Tunnel, 4-61, 4-63
Ultimate four-lane, 7-14; see also Arterials
Crashes; see Safety
Cross slope
Arterials; see Arterials
Auxiliary lanes, 4-7
Change in, 3-61, 3-78; see also Superelevation, runoff
Climbing lanes, 3-141
Collectors; see Collector roads and streets
Crosswalk, 3-130, 3-180
Crossover crown line; see Crown
Divided highways, 4-5
Drainage, 3-87, 4-5, 4-14
Freeways; see Freeways
Intersecting roadways, 4-2
Local roads and streets, 3-54; see also Local roads and streets
Maximum, 4-7
Minimum, 4-6–7
Normal, 4-3, 4-5
Parking lanes, 7-39
Ramps; see Ramps
Rates, 4-6–9
Recreational roads, 5-33
Resource recovery and local service roads; see Local roads and streets
Removing, for superelevation, 3-52, 3-70, 3-81, 6-15
Rollover, control for, 9-89
pavement crown, 4-6, 4-32
shoulders, 4-33, 7-6, 8-4
Shape, 3-31
Shoulder slope break, 4-13–14
Sidewalk, 4-66
Superelevated, 3-31, 4-4–5, 4-32–33
Tunnels; see Tunnels
Turnouts, bus; see Turnouts
Crosswalks
Roundabouts, 9-150–151
Turning roadways and channelization; see Turning roadways
Crown
Crossover crown line, 4-6, 9-89
Cross slope, 3-52; see also Cross slope
Freeways, 8-3
General, 4-2–6
Pavement, 4-6
Cul-de-sacs, 5-19–20
Curbs
Arterials; see Arterials
Asphaltic concrete, 4-19
Bituminous, 4-19
Collectors; see Collector roads and streets
Concrete, 4-19
Configurations, 4-19–21
Considerations for pedestrians and bicycles, 4-21–22
Cross section, 4-20
Drainage, 4-21–22, 4-23–28
Driveway access, 4-53
Freeways, 4-20–21, 4-23; see also Freeways
General, 4-19
Granite, 4-19
Gutter, 4-21–23
Islands; see Islands
Local roads and streets; see Local roads and streets
Medians, 4-21
Near overpasses, 10-26
Offset from traveled way, 4-18
Placement, 4-22–23
Radii; see Radii
Ramps; see Ramps
Shoulder, with and without, 4-12
Sloping, 4-19–4-21
Turning roadways, 9-65–67
Types, 4-19
Underpasses, 10-23
Utilities, 3-192
Vertical, 4-19–21
Width, 4-20–21
Curves—Horizontal
Broken back, 3-121
Compound, 3-60–61
Design speed and curvature, 3-70–72
Design tables, 3-34–35, 3-42–51, 3-54–57
Low-speed urban, 3-53–59
Formula; see Formulas
Friction factors, 3-21–30
Intersection; see Curves—Intersection
Maximum curvature, 3-31, 3-52
Ramp; see Ramps
Sight distance on, 3-113–119, 4-37
Spirals; see Transitions
Superelevation, 3-20–21
Transitions; see Transitions
Traveled way widening on; see Widening
Turning roadways, 3-59–61
Curves—Intersection
Compound, 3-59
Control radii for left turns, 9-119–121
Encroachment; see Turning
Maximum curvature, 3-31, 3-52
Minimum designs for sharpest turn, 9-28
Minimum radii, 9-122
Choice of design, 9-64
Oblique-angle, 9-65, 9-82
Passenger vehicles, 9-66
Ramps; see Ramps
Single-unit trucks and buses, 9-53–55, 9-124
Speed–curvature relations, 3-96
Spiral; see Transitions
Curves—Vertical
Asymmetrical, 3-166
Broken back, 3-179–180
Crest, 3-166–172
Design controls for, 3-167–172
passing sight distance, 3-15–16, 3-171
stopping sight distance, 3-15–16, 3-167–171
Drainage requirements on, 3-165, 4-24
General considerations, 3-164–166
Lengths, 3-166–179
Parabolic, 3-165–166
Ramps; see Ramps
Sag, 3-172–176
Sight distance on, 3-166–180
Turning roadway, 3-113
Types, 3-165
Dead-end streets; see Cul-de-sacs
Deceleration
Adjusting speed approaching intersections, 2-88, 9-40
Turning roadways, 9-62

© 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
I-9

Braking, 3-2–4
Intersections, 9-62
Lanes, 9-62; see also Speed-change lanes
Length at auxiliary lane, 3-152
Rates, 2-86–88
Tapers, 9-100–104
Trucks, on grades, 3-6–7, 3-122–123

Decision sight distance, 3-7–9
Definition, 3-7

Degree of congestion
Acceptable limits, 2-32–33
Alignment, 3-139, 3-143
Definition, 2-31
Design speed; see Design speed
Levels of service, 2-36–37
Measures, 2-31
Peak-hour factor, 2-35–36
Ramps and ramp terminals, 2-35
Relation to traffic flow, 2-31–32
Weaving, 2-34, 2-38

Delineators; see Markings

Design
Capacity; see Capacity
Controls and criteria, 2-1
bicycle facilities, 1-23–24, 2-54–55, 4-77
driver performance, 2-1–2-3
economic analysis, 1-36
environment, 2-95
pedestrians, 1-24–25, 2-50–54
safety, 2-44–49, 2-91–95
traffic characteristics, 2-13–29
vehicles; see Design vehicles

Elements of, 3-1
alignment—combinations; see Alignment—Combinations of
alignment—horizontal; see Alignment—Horizontal
alignment—vertical; see Alignment—Vertical
decision sight distance, 3-7–9
drainage, 4-32–28
erosion control and landscape development, 3-186–187
fencing, 4-57
gate separations and interchanges, 10-1–3
information centers, 3-187
intersections, 2-41, 9-10–11
low-speed urban streets, 3-53–59
maintenance of traffic through construction areas, 3-195
noise barriers, 4-48–51
passing sight distance, 3-10–14
rest areas, 3-187–188
scenic overlooks, 3-187
sight distance, 3-1–19
stopping sight distance, 3-2–7, 3-114–119
traffic control devices, 2-93, 3-193–194
traveled way widening on curves, 3-91–104
turning roadways, 3-59–61
utilities, 3-190–192
flexibility, 1-32–33
performance-based, 1-33–36, 2-86
Period, 2-21
Speed; see Design speed
Vehicles; see Design vehicles

Design hourly volume (DHV); see Traffic

Design speed
Alignment—combinations, 3-181
Alignment—horizontal, 2-26
Alignment—vertical, 3-167–176
Arterials, 2-26–2-27; see also Arterials
Channelization, 9-67–68
Collectors; see Collector roads and streets
Freeways; see Freeways
General, 2-11–2-12, 2-23–2-27
Local roads and streets; see Local roads and streets
Intersections, 9-40–42
Operating speed, 2-22
Ramps; see Ramps
Recreational roads, 5-28–29
Relation to average running speed, 2-24, 3-30
average trip length, 2-25
grades, lengths, 10-132
maximum grades, 3-130
maximum relative gradients, 3-78–79
Resource recovery and local service roads, 5-38
Running speed; see Speed
Sight distance, 3-4–6, 3-8–9, 3-11–14, 9-40–42
Speed-change lane length; see Speed-change lanes
Speed transitions entering rural towns, 6-11–12
Superelevation, 2-23, 3-30
Traffic volumes, 2-23
Use of spirals, 10-32

Design vehicles
Bus, 2-55, 2-58
Characteristics, 2-55–58
Control radii for left turns, 9-119
Definition, 2-55
Dimensions, 2-55–57
For profile design; see Alignment—Vertical
Height; see Height
Intersections, 9-4, 9-63, 9-117
Median openings, 9-123, 9-138
Minimum turning radius and paths, 2-58–85;
see also Design vehicles—Intersections
Overhang, 3-93–95
Passenger car (P), 2-55
Performance, 2-86
Recreational vehicles; see Recreational vehicles
Semitrailer; see Design vehicles
Track width, 3-94–95, 3-98–112
Tractor–semitrailer combinations; see Design vehicles—Truck combinations
Truck combinations, 2-58, 2-61; see also Trucks
Vehicular pollution, 2-89–90
Design volume; see Capacity or Traffic
Detours, 3-195
Diamond interchanges; see Interchanges
Directional; see also Interchanges
Distribution; see Traffic
Lane usage, 7-59–62
Disabilities; see Persons with disabilities

Divided highways (other than freeways)
Alignment; see Alignment—Combinations of
Clearances; see Clearances
Cross sections; see Cross section
Cross slope, pavement, 3-87
Definition, 3-87
General features, 3-87
Lane widths, 4-3
Median openings; see Median openings
Median width, 4-40
Medians; see Medians
Operational problems, 7-28
Profile, 7-18–19
Right-of-way; see Right-of-way
Runoff, 3-87
Shoulders, 4-13
Stopping sight distance, 3-14
Superelevated cross sections, 4-32–33
Widely separated roadways, 7-17–18, 7-28

Drainage
Channels, 4-25–28
Controls, 4-32
on vertical curves, 3-175
Curb and gutter, 4-14, 4-21–23
Erosion; see Erosion Control
Pavement, 3-62–64
Shoulders, 4-13–14
Storm frequencies, for design, 4-25

Drivers
Alertness, 9-94
Brake reaction time, 2-5, 3-2–3
Comfort, 3-164, 4-5, 4-9, 4-59
Decision maneuver time, 3-7–9
Error, 2-3, 2-8–2-11
Expectancy, 2-8
General, 2-1–2
Guidance, 2-3–2-4
Height of eye and object; see Height
Information processing, 2-4–8
Older, 2-2, 2-9–11
Perception–reaction times, 9-94–96

© 2018 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
Performance, 2-1–2-3
Primacy, 2-8
Safety, 2-2–3, 2-8
Speed, effects of, 3-24
Tasks, 2-2–3

Driveways, 4-52–55, 5-8, 6-20, 9-157–158
Dual-divided freeways
Advantages, 8-36–37
Arrangements, 8-37
Cross section, 8-38; see also Cross section
Design, 8-36–38
Disadvantages, 8-37
Examples, 8-38

Ecology; see Environmental evaluation

Economic evaluation
General, 1-36
Motor vehicle operating costs, 10-11
Road user costs and benefits, 1-36

Emergency escape ramps; see Ramps

Environmental evaluation
Drainage channels, 4-24, 4-28
Erosion control; see Erosion control
General, 3-186–187
Seeding and planting, 6-11
Sideslopes, 4-29–31

Erosion control
Drainage channels, 4-25, 4-28
General, 3-186–187
Seeding and planting, 6-11
Sideslopes, 4-29–31

Escape Ramps; see Ramps

Esthetics; see Aesthetics

Fencing, 4-57

Flexibility
In Design, 1-32–33

Formulas
Braking distance, 3-4
e and f distribution, 3-26
Horizontal sightline offset, 3-115
Intersection sight distance, 9-45, 9-51
Minimum length of runoff, 3-63
Minimum length of tangent runout, 3-70
Minimum radius, 3-33
Offtracking, vehicle turning, 3-92
Passing sight distance, elements of, 3-10–14
crest vertical curves, 3-171
Profile grade and effective maximum relative gradient, 3-88
Railroad–highway grade crossing sight distance, 9-163
Relative overhang, 3-93
Side friction factor, 3-22
Sight triangles, see Formulas—Intersection sight distance
Spiral length, 3-74, 3-76–77, 3-80
Stopping, effects of grades on, 3-5
Stopping sight distance, 3-5
crest vertical curves, 3-166–167
horizontal curves, 3-5
sag vertical curves, 3-173
Storage Length, 9-97
Traveled way widening, 3-96, 3-98
Traveled way width on curve, 3-103
Vehicle operation on a curve, 3-20
Weaving sections; see Weaving sections

Four-lane highways
Capacity; see Capacity
Divided; see Divided highways
Superelevation runoff; see Superelevation
Ultimate development of, 7-11–14; see also Arterials
Undivided, 10-80–81

Freeways
Alignment, 8-7–8
Borders, 8-6–7
Bus facilities, 8-41–47
Bus stops, 8-42–47
Bus turnouts, 8-42
Capacity, 8-2–3
Clearances, vertical and horizontal, 8-5
Classification, 8-12
Collector–distributor roads, 8-39; see also Interchanges
Combination-type, 8-28–32
Control of access; see Control of access and access management
Cross section, 8-10, 8-15–17, 8-21–24, 8-26–27, 8-29–31, 8-33
Curbs along, 4-20–21, 8-4
Definition, 8-1
Depressed, 8-13–18, 10-25
Design speed, 3-36–53, 8-2
Dual-divided; see Dual-divided freeways
Elevated, 8-19–25
Examples, 8-8, 8-18, 8-24–25, 8-32
Frontage roads, 4-43–44, 8-6–7, 8-12, 8-20
General design considerations, 8-2–7, 8-12
Grades, 8-4–5
Ground-level, 8-26–28
Lane width, 8-3, 8-21
Levels of service, 8-3
Maximum grades; see Grades
Medians, 4-40, 8-3, 8-9–8-11, 8-13, 8-20
On embankment, 8-19, 8-23–24
Outer separations, 8-6–7
Overpasses; see Grade separations
Pavement, 8-3
Profile control, 8-7–8, 8-28–32
Rail, 8-47–51
Ramps, 8-6, 8-20; see also Ramps
Reverse-flow, 8-33–36; see also Reverse-flow roadways
Rural, 8-7–12
Safety, 8-1
Shoulders, 8-3–4
Sideslopes, 4-30, 8-11
Structures, 8-5
Superelevation, 8-4; see also Superelevation
Terminals, 8-6, 8-20; see also Terminals
Terrain, 8-5, 8-28–30
Transit facilities, 8-39–51; see also Public transit
Traveled way, 8-3
Tunnels; see Tunnels
Urban, 8-12
Viaduct, 8-19–25
Volume, 8-2
Walls, 8-6, 8-14, 8-16–17
Width, 8-3
Friction; see also Superelevation
Ice and snow, 3-24–25
Side friction factors
open highways, 3-23
turning roadways, 3-33
urban streets, low-speed, 3-53
Frontage roads
Access control, with and without; see Control of access and access management
Arterials, 4-41–43
Cross street connections to, 9-151–154
Cross sections with, 4-43–44
Freeways, 4-43–44; see also Freeways
Functions, 4-41–42
General, 4-41
Interchanges with, 10-14
Intersections with, 9-151–159
Means of driveway control, 4-55
Outer separation, 4-45; see also Outer separations
Problems with, 4-43–44
Two-way, 4-43–45
Functional classification; see Classification, functional
Grades
Arterials; see Arterials
Alignment coordination, 3-182–186
At intersections, 9-31–35
Climbing lanes; see Climbing lanes
Collectors; see Collector roads and streets
Control for design, 3-130–136
maximum, 3-130
minimum, 3-130
Critical lengths, 3-130–136
Effect on acceleration, 3-35–36
deceleration, 3-5–7
drainage, 3-87–88
intersection sight distance, 3-5–6
noise, 2-89
passing sight distance, 3-12
Freeways; see Freeways
General, 3-122
Grade separations; see Grade separations
Grates, 6-24
Gutter, 6-24
Intersections, 9-1
Local roads and streets; see Local roads and streets
Maximum
on arterials, 7-38
on collectors; see Collector roads and streets
on freeways, 8-5
relation to design speed, 3-130
Pedestrian considerations, 3-130
Profile pertaining to intersections; see Intersections
Ramps; see Ramps
Recreational roads, 5-29–30
Resource recovery and local service roads, 5-37–38
Stopping sight distance, 3-5–6
Superelevation, see Superelevation
Vehicle operations, 3-122
passenger cars, 3-122
trucks, 3-6–7, 3-122–126
Weight/power ratio, 3-122–123, 3-126, 3-131

Grade separations
Arterials, 7-26–7-27
Bicycles, 10-151
Distance to effect grade separation, 10-27–30
Overpass versus underpass, 10-18–21
Pedestrian, 10-151
Safety; see Safety
Spacing, 10-8, 10-14
Span arrangements, 10-15
Stage construction; see Stage construction
Structures
arterials; see Arterials
bridge railings, 10-25–26
clearances, 10-24–25
curbs; see Curbs
design considerations, 10-12
freeways; see Freeways
general, 10-1
guardrail at; see Guardrail
long-span, 10-21
medians, 10-12, 10-22
overpasses, 10-25–30
underpasses, 10-22–25; see also Clearances
Warrants for, 10-3–5
With frontage roads, 10-2, 10-14
Without ramps, 10-29

Grading; see also Erosion control and Landscape development
Grading design, 10-153–154
Interchanges, 10-153–154
Stage construction; see Stage construction

Guardrail; see also Traffic barriers and Structures—Railings
Additional width for, 5-34
At overpasses, 10-27
At underpasses, 10-24
Clearance from pavement edge, 4-11
Contribution to driver guidance, 2-4–5
Damage, as warrant for escape ramps, 3-156
Design of, 2-93
Gores, 10-115
Local roads and streets, 5-23; see also Local roads and streets
Location of luminaire supports; see Lighting
Median; see Medians
Near mailboxes, 4-56
Near shoulders, 4-12
Placement, 4-11–12

Guideposts, see also Guardrail
Gutter; see Curbs
Headlight
 Glare, 2-9, 7-15
 Height of, 3-15
 Sight distance, 3-15–16

Height
 Eye, 3-15
 Headlight, 3-15
 Object, 3-15
 Vehicles, 3-15

High-occupancy vehicle (HOV) facilities, 4-78

Horizontal alignment; see Alignment—Horizontal

Horizontal curves; see Curves—Horizontal

Horizontal sightline offset, 3-116–117, 10-122

Hydroplaning, 3-20–21, 4-8–9

Information centers; see Rest areas

Interchanges
 Acceleration lanes; see Speed-change lanes
 Adaptability, 10-6–8
 Alignment, 10-79–81
 Approaches to, 10-79–82
 Arterials, 7-29, 7-63–64
 Bicycles, 10-151–152
 Capacity, 10-6–7
 Cloverleaf, 10-57–71, 10-95–97
 Collector–distributor roads, 8-39, 10-82, 10-95–97
 Combinations, 10-72–76
 Configurations, 10-76–79
 Continuity, 10-83–84
 Deceleration lanes; see Speed-change lanes
 Definition, 10-1
 Design considerations, 10-76–102
 Diamond, 10-40–47
 Directional, 10-63–71
 Diverging diamond, 10-53–57
 Economic factors, 10-11
 Four-leg, 10-39–71
 General, 10-1–2, 10-30–31
 Grading, 10-153–154
 Landscape development, 10-153–154
 Lane balance, 10-87–90
 Lane reductions, 10-93–94
 Lanes, basic number of, 10-86–90
 Lighting; see Lighting
 Major forks, 10-147–150
 Managed lanes, 8-39–40, 10-152
 Models, 10-154
 Multiple-level, 10-68
 Offset, 10-72
 Operation, 10-6–7
 Overlapping routes, 10-84–85
 Partial cloverleaf, 10-60–63
 Pedestrians, 10-151–152
 Preliminary design, 10-27–29
 Profile, 10-79–81
 Ramps; see Ramps
 Ramps in one quadrant, 10-39–40
 Ramp metering, 10-152–153
 Roundabout, 9-141–151, 10-47
 Route continuity, 10-83–84
 Safety, 10-9
 Semidirectional, 10-73, 10-77
 Signing and marking, 10-86
 Single-exit design, 10-96–98
 Single-point urban, 10-48–52
 Site conditions, 10-7
 Sight distance, 10-81–82
 Spacing, 10-82
 Speed-change lanes; see Speed-change lanes
 Split diamond, 10-42
 Stage development, 10-10; see also Stage construction
 Three-leg, 10-31–38
 Transit facilities, 10-152
 Trumpet, 10-32–38
 Two-exit design, 10-96–98
 Type selection, 10-7–8
 Types, 10-2–3
 Uniformity, 10-82–83
 Warrants for, 10-3–5
 Weaving sections, 2-38–40, 10-94–95
 Wrong way entry at, 10-98–102

© 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
Intersection design elements; see *Intersections*

Intersections

- Alignment, 9-31–33
- Angle, 9-14, 9-19
- Arterials, see *Arterials*
- Bicycles, 9-7
- Capacity, 9-9–10
- Channelized, 9-15–23, 9-67–69
- Characteristics, 9-2–3
- Collectors, 6-22
- Continuous left-turn lanes, 7-42–43
- Control devices; see *Traffic control devices, Signal control, or Signs*
- Curb return radii, 9-65–67
- Curves, see *Curves—Intersection*
- Definition, 9-1
- Design, 2-41, 9-4–9
- Examples
 - four-leg, 9-18, 9-20–21
 - multileg, 9-25
 - roundabouts, 9-29–31, 9-142
 - three-leg, 9-14–17
- Four-leg, 9-18–24
- Frontage roads, 9-151–159
- Functional area of, 9-3–4
- General, 9-1–2
- Grades; see *Grades*
- Illumination levels, 9-156–157
- Islands, 9-69–82
- Lighting, 3-189, 9-156–157
- Local roads and streets; see *Local roads and streets*
- Median lanes; see *Median lanes*
- Median openings; see *Median openings*
- Median width at intersections, 4-39–40
- Multileg, 9-24–26
- Pavement edge design; see *Turning roadways*
- Pedestrians, 2-52–53, 9-7
- Profile, 9-33–35
- Railroad–highway grade crossings; see *Railroad–highway grade crossings*
- Ramp terminals, see also *Terminals*
- Roundabouts, 9-26–31, 9-141–151
- Safety, 9-3–5
- Shoulders; see *Shoulders*
- Sight distance, 9-31, 9-35–60, 9-91–92
- Sight triangles, 9-36–39
- Signal control, effect of; see *Signal control*
- Signs; see *Signs*
- Skew, 9-19–22, 9-58–59
- Storage, 9-96–99
- Superelevation, see also *Superelevation*
- Taper, 9-100–104
- Three-leg, 9-14–18
- Traffic control devices; see *Traffic control devices, Signal control, or Signs*
- Transitions; see *Transitions*
- Turning movements, 9-42–48, 9-53–58
- Turning roadways; see *Turning roadways*
- Two-way left-turn lanes; see *Median lanes*
- Types, 9-11–31
- U-turns and indirect left turns, 9-124–141; see also *U-turns*
- Wheelchair ramps, 9-74

Islands

- Approach-end treatment, 9-75–81
- Approach nose, 9-76, 9-80–81
 - offset, 9-76
- Channelized; see *Channelization, Intersections*
- Corner, 9-82
- Cross section, 9-78–79
- Curbed, 4-19, 4-22, 9-61
- Definition, 9-69–70
- Delineation, 9-70, 9-75–81
- Divisional, 9-72–73
 - intersection with, 9-73
- Examples with; see *Intersections*
- Functions, 9-61, 9-69
- General, 9-69–70
- Non-paved, 9-75
- Refuge, 9-61, 9-74
- Shoulders adjacent to, 9-76–79
- Size and designation, 3-112, 9-74–75
Types, 9-69–70

Landscape development
- Collectors; see Collector roads and streets
- Erosion control; see Erosion control
- General, 3-186–187
- Interchanges, 10-7–8
- Local roads and streets; see Local roads and streets
- Noise control, 2-89–90, 4-51; see also Noise

Land Use
- Management (controls), 2-45
- Zoning, 7-52–53

Lanes
- Climbing; see Climbing lanes
- Exclusive bus, 7-68
- Exclusive HOV, 8-41–42
- Left turn; see also Auxiliary lanes
 - on arterials; see Arterials
 - on collectors, 6-16
 - on local roads and streets, 5-16
- Parking lanes; see Parking
- Passing lanes; see Passing lanes
- Placement of vehicles within, 2-3
- Reduction, 10-149–150
- Right-turn; see Auxiliary lanes
- Turning; see Auxiliary lanes
- Two-way left-turn, 4-39–40
- Widths, 4-9–10
- Widths with curb and gutter, 4-21–22

Lateral Offset, 4-18

Left Turns; see Auxiliary lanes

Lengths
- Auxiliary lanes at intersections, 9-19
- Curves
 - intersection; see Curves–Intersection
 - vertical, 3-168–176
- Design vehicles; see Design vehicles
- Grades; see Grades
- Median openings; see Median openings
- Sight distance; see Sight distance
- Spirals, 3-74–75
- Storage, 9-96–99

Superelevation runoff, 3-62–69
Superelevation runout; see Lengths—Tangent runout
Taper, 10-94
Tangent runout, 3-70; see also Tangent runout
Vehicles, see Vehicles
Weaving sections; see Weaving sections

Levels of Service
- Definition, 2-36
- Design capacity; see Capacity
- Selection of, 9-10

Lighting
- Arterials; see Arterials
 - Benefits, 3-188–189
 - Breakaway, 3-190
 - Design, 3-188
 - Freeways; see Freeways
 - Guide, 3-188
 - General, 3-188–190
 - Heights of luminaires, 3-189–190
 - Interchanges, 3-189, 10-152
 - Intersections, 3-189
 - Location of luminaire supports, 3-190
 - Movable bridges, 3-189
 - Objects, 3-188–190
 - Pedestrian, 10-152
 - Railroad–highway grade crossing, 3-189
 - Signs, 3-190
 - Toll plazas, 3-189
 - Tunnels, 3-189, 4-59
 - Uniformity, 3-189
 - Warrants, 3-188
 - Work zones, 3-195

Local roads and streets; see also Collector roads and streets
- General, 5-1–2, 6-1
- Low-volume roads, 5-2, 5-10, 5-39, 6-1–2
- Recreational roads, 5-27–37
- Resource recovery and local service roads, 5-37–39
- Rural areas, 1-13, 5-2
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>alignment</td>
<td>5-3</td>
</tr>
<tr>
<td>bicycle facilities</td>
<td>5-6, 5-8</td>
</tr>
<tr>
<td>clearances</td>
<td>5-9</td>
</tr>
<tr>
<td>clear zones</td>
<td>4-17, 5-10</td>
</tr>
<tr>
<td>cross slope</td>
<td>5-4</td>
</tr>
<tr>
<td>curbs</td>
<td>5-8</td>
</tr>
<tr>
<td>design speed</td>
<td>5-2–3</td>
</tr>
<tr>
<td>design traffic volumes</td>
<td>5-3</td>
</tr>
<tr>
<td>drainage</td>
<td>5-12</td>
</tr>
<tr>
<td>driveways</td>
<td>4-54, 5-8</td>
</tr>
<tr>
<td>erosion control and landscaping</td>
<td>5-12</td>
</tr>
<tr>
<td>foreslopes</td>
<td>5-10</td>
</tr>
<tr>
<td>intersection design</td>
<td>5-11</td>
</tr>
<tr>
<td>grades</td>
<td>5-3–4</td>
</tr>
<tr>
<td>lane width</td>
<td>5-6</td>
</tr>
<tr>
<td>lateral offset</td>
<td>5-10</td>
</tr>
<tr>
<td>levels of service</td>
<td>5-3</td>
</tr>
<tr>
<td>medians</td>
<td>5-7</td>
</tr>
<tr>
<td>number of lanes</td>
<td>5-6</td>
</tr>
<tr>
<td>railroad–highway grade crossings</td>
<td>5-11</td>
</tr>
<tr>
<td>right-of-way width</td>
<td>5-7</td>
</tr>
<tr>
<td>sight distance</td>
<td>5-4–5</td>
</tr>
<tr>
<td>signs and markings</td>
<td>5-12</td>
</tr>
<tr>
<td>shoulder width</td>
<td>5-6</td>
</tr>
<tr>
<td>structures</td>
<td>5-9–12</td>
</tr>
<tr>
<td>superelevation</td>
<td>4-33, 5-4</td>
</tr>
<tr>
<td>traffic control devices</td>
<td>5-12</td>
</tr>
<tr>
<td>vertical clearance</td>
<td>5-9</td>
</tr>
<tr>
<td>width of roadway</td>
<td>5-6–7</td>
</tr>
</tbody>
</table>

Urban areas, 1-15, 5-12–13

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>alignment</td>
<td>5-14</td>
</tr>
<tr>
<td>alleys</td>
<td>5-20–22</td>
</tr>
<tr>
<td>bicycle facilities</td>
<td>5-16, 5-18–19</td>
</tr>
<tr>
<td>border area</td>
<td>4-1, 5-17</td>
</tr>
<tr>
<td>clearances</td>
<td>5-23</td>
</tr>
<tr>
<td>clear zones</td>
<td>4-17, 5-23</td>
</tr>
<tr>
<td>cross slope</td>
<td>5-15</td>
</tr>
<tr>
<td>curb return radius</td>
<td>5-24</td>
</tr>
<tr>
<td>curbs</td>
<td>5-17</td>
</tr>
<tr>
<td>cul-de-sacs and turnarounds</td>
<td>5-19–20</td>
</tr>
<tr>
<td>definition</td>
<td>5-12–13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>design speed</td>
<td>5-14</td>
</tr>
<tr>
<td>design traffic volume</td>
<td>5-14</td>
</tr>
<tr>
<td>drainage</td>
<td>5-25</td>
</tr>
<tr>
<td>driveways</td>
<td>4-54, 5-21</td>
</tr>
<tr>
<td>erosion control and landscaping</td>
<td>5-25–26</td>
</tr>
<tr>
<td>general</td>
<td>1-15–16, 5-13</td>
</tr>
<tr>
<td>grades</td>
<td>5-15</td>
</tr>
<tr>
<td>intersection design</td>
<td>5-23–24</td>
</tr>
<tr>
<td>landscaping</td>
<td>5-26</td>
</tr>
<tr>
<td>lane width</td>
<td>5-16</td>
</tr>
<tr>
<td>lateral offset</td>
<td>4-18, 5-23</td>
</tr>
<tr>
<td>levels of service</td>
<td>2-36–37, 5-14</td>
</tr>
<tr>
<td>lighting</td>
<td>5-25</td>
</tr>
<tr>
<td>medians</td>
<td>5-17</td>
</tr>
<tr>
<td>number of lanes</td>
<td>5-16</td>
</tr>
<tr>
<td>parking lanes</td>
<td>5-16–17</td>
</tr>
<tr>
<td>railroad–highway grade crossings</td>
<td>5-25</td>
</tr>
<tr>
<td>right-of-way width</td>
<td>5-17</td>
</tr>
<tr>
<td>sidewalk curb ramps</td>
<td>4-70–76, 5-18–19</td>
</tr>
<tr>
<td>sidewalks</td>
<td>5-18–19</td>
</tr>
<tr>
<td>sight distance</td>
<td>5-16</td>
</tr>
<tr>
<td>structures</td>
<td>5-22–23</td>
</tr>
<tr>
<td>superelevation</td>
<td>4-33, 5-15</td>
</tr>
<tr>
<td>traffic control devices</td>
<td>5-25</td>
</tr>
<tr>
<td>transit facilities</td>
<td>5-19</td>
</tr>
<tr>
<td>utilities</td>
<td>5-17</td>
</tr>
<tr>
<td>vertical clearance</td>
<td>5-23</td>
</tr>
<tr>
<td>width of roadway</td>
<td>5-16</td>
</tr>
<tr>
<td>widths for bridges</td>
<td>5-22</td>
</tr>
</tbody>
</table>

Rural town context, 5-12

Loops; see **Ramps**

Low-volume roads; see **Local roads and streets**

Mailboxes, 4-55–57

Maintenance

- **Interchanges**, 10-11
- **Sideslopes**, 4-29–31
- Traffic, during construction, 3-195

Major forks; see **Interchanges**

Managed lanes; see **Interchanges**

Markings

- Approach nose treatment (gore), 10-114–115
Auxiliary lanes, 10-93
Centerline, 4-16–17
Collectors; see Collector roads and streets
Climbing lanes, 3-141; see also Climbing lanes
Curbs, reflectorized, 4-19; see also Curbs
Delineators, 9-70, 9-75–77
Edge lines, 4-15
General, 3-193–194
Islands, 4-19, 9-69, 9-74–75
Local roads and streets, 5-12
Median lanes, 9-24
No passing, 3-10
Parking lanes, 4-87
Passing lanes; see Passing lanes
Pavement, 3-193–194
Pedestrian, 2-51, 3-193–194, 4-71
Railroad–highway grade crossings, 9-161–162
Recreational roads, 5-37
Resource recovery and local service roads, 5-38; see also Local roads and streets
Shoulders, 4-15; see also Markings—Edge lines
Turnouts for slow vehicles, 4-79

Mass transit, see Public transit

Medians
Arterials, divided; see Arterials
Barrier, 4-35–37
Collectors; see Collector roads and streets
Contrast, 7-43
Crashes, 7-44
Cross section, 4-2–6
Curbs, 4-21
Definition, 4-38
Depressed, 4-39
Deterrent to wrong-way movements, 10-102
Drainage channels, 4-5–6, 4-27
End, shape or treatment of, 9-113
Flush, 4-39
For ultimate development of divided arterial, 7-12; see also Arterials
Freeways; see Freeways
Frontage roads, 4-42, 9-158–159
General, 4-38–41
Islands; see Islands
Lane; see Median lanes
Local roads and streets, 6-7
On overpass, 10-27
Openings; see Median openings
Raised, 4-39; see also Medians—Curbs
Slopes; see Sideslopes
Summary, 4-38
Transversable; see Medians—Flush
Types, 4-39
Variation in width of, 4-38–39
Width, 4-38–40
at intersections, 4-38–39
U-turns, design for, 9-124–125; see also U-turns

Median barriers
Arterials, 7-16–7-18, 7-44–45
Curbs; see Curbs
Freeways, 4-36; see also Freeways
General, 4-35–37
Types, 4-36

Median lanes
Left-turn, 9-110–113
Special designs for left turns, 9-111–112
Storage, 9-96–99
Two-way left-turn, 4-39–40
Width, 4-39; see also Auxiliary lanes

Median openings
Bullet nose, 9-120
Control radii, 9-119–120, 9-122–123
Design for cross traffic, 9-123
Designs for left turns, 9-110–113
Emergency crossovers, 9-118
General, 9-118–119
Higher speed left turns, 9-122–123
Intersections, 9-118–123
Length (and shape), 9-120–123
Minimum length, 9-122–123
On arterials, 7-18, 7-41
On collector roads and streets, 6-17–18
Semicircular, 9-120–121
Shape of median end, 9-113, 9-120–121
Skew, effect of, 9-121
Space between, U-turns, 9-133–135; see also U-Turns
With median lanes; see Median lanes
Multilane Highways; see also Arterials, Divided highways
Climbing lanes, 3-142; see also Climbing lanes
Cross slope, 4-5
Intersections with, 2-33
Safety, 3-36
Sight distance, 3-14
Undivided; see Control of access and access management
Multimodal Considerations, 1-6–7
New Construction Projects; see Project Types
Noise
Abatement criteria, 4-47–48
Barriers, 4-48–51
Design noise levels, 2-89–90
Design procedure to control, 4-47
From vehicles, 2-89–90
General considerations, 2-89–90; 4-46–47
Human reactions, 4-46–47
Landscaping, effect on, 4-51
Location, effect on, 4-49–51
Physical measurement, decibels, 4-47
Reduction design, 4-48–51
Noise; see Approach noise
Offset; see Clearances
One-way roadways; see Divided highways
One-way streets, 7-59–60
Operating speed, 2-22
Outer separations
Arterials, 4-45–46
Definition, 4-45
Designs, 4-46
Drainage, 4-45
Freeways; see Freeways
Frontage roads, 4-44
General, 4-45
Width, 4-45
Overpasses; see Grade separations
Parking
Central business district, 4-87
Curb, 4-85–87
Design, 4-85–87
Lanes, 4-86
Lane width, 4-86
on arterials, 4-86; see also Arterials
on collectors, 4-86, 6-7, 6-16–17
on local roads and streets, 4-86–87, 5-16–17
On-street, 4-85–87
Park-and-ride facilities, 4-82–84
Residential areas, 4-85
Rest areas; see Rest areas
Passenger cars
Acceleration, 2-86–87
Design vehicles; see Design vehicles
Traffic, composition of, 2-19
Turning path, 2-58–64
Passing lanes
Definition, 3-145
Examples, 3-147
General, 3-145–149
Length, 3-147–149
Location, 3-145–146
Need for, 3-145–146, 7-11
Number of lanes, 3-147–148
Operational benefits, 3-145
Shoulders, 3-147–148
Sight distance, 3-10–14
Tapers, 3-148
Transitions, 3-148
Traffic control devices, 3-148
Passing sections
Frequency, 3-137
Lanes; see Passing lanes
No-passing zones, 3-10, 3-13
Shoulder driving, 3-153–154
Shoulder use sections, 3-154
Sight distance, 3-10–14
Passing sight distance
Arterials, see Arterials
Collectors; see Collector roads and streets
Criteria for design, 3-10
Definition, 3-10
Design values, 3-10–12
Effect of grade, 3-12
Elements of, 3-10–14
Frequency and length, 3-12–14
Height of eye, 3-15
Height of object, 3-15
Local roads and streets; see Local roads and streets
Measuring, 3-15–19
Multilane highways, 3-14
On horizontal curves, 3-119
On recreational roads, 5-32–33
On resource recovery and local service roads; see Local roads and streets
On vertical curves, 3-11
Relation to stopping sight distance, 3-10
Paths, see also Turning or Turning roadways
Pavement, 4-1–7; see also Traveled way
Contrasts; see Contrasting surfaces
Cross slope, 4-2; see also Cross slope
Edge lines, 4-16
General, 4-1–7
Lane widths; see Lanes
Markings; see Markings
Railroad–highway grade crossings, 6-10
Recreational roads, 5-29, 5-31
Resource recovery and local service roads; see Local roads and streets
Skid resistance, 4-8
Surface (types), 4-1–2
Unpaved surfaces, 4-7–8
Widening on curves, 3-101
Widths
lane; see Width
ramps; see Ramps
turning roadways; Turning roadways

Peak-hour factor (PHF), 2-35; see also Capacity

Peak-hour traffic
Design, 2-14
Directional distribution, 2-18
Future, 2-14
General, 2-14–19
Maximum, 2-14
Thirtieth highest, 2-14

Pedestrians; see also Pedestrian facilities and Sidewalks
Capacity (walkway), 2-52
Characteristics, 2-50–51
Crosswalks; see Crosswalks
Disabilities, accommodating persons with, 1-24–25, 2-53–54, 4-8, 4-13, 4-66, 4-70–77, 4-81–83, 5-6, 5-8, 5-15, 5-18–19, 6-16, 6-19–20, 7-9, 8-42, 8-44–47, 8-49
General, 1-24–25, 2-50
Safety, 2-51
Walking speeds, 2-52

Pedestrian facilities; see also Pedestrians
Arterials; see Arterials
At-grade crossings, 4-65–66
Crossing distance, effect of radii on, 9-61
Crosswalks; see Crosswalks
Depressed freeways; see Freeways
Disabilities, accommodating persons with, 1-24–25, 2-53–54, 4-8, 4-13, 4-66, 4-70–77, 4-81–83, 5-6, 5-8, 5-15, 5-18–19, 6-16, 6-19–20, 7-9, 8-42, 8-44–47, 8-49
Grade separations; see Grade separations
Intersections, 2-52–53, 9-156
Interchanges, 10-151–152
Pedestrian overpasses, 2-50, 4-67–69
Pedestrian underpasses, 2-50–51, 4-67–68
Protective screens, 4-68–69
Ramps, 4-70–77; see also Sidewalk curb ramps
Restricted Crossing (RCUT); see U-turns
Separations; see Grade separations
Sidewalks; see Sidewalks
Signals, 2-51, 3-193–194
Signs, 2-51, 3-193–194

© 2018 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
Stairs (stairways), 8-42, 8-46
Width, 2-52
Perception–reaction time, 9-94–96
Performance-based design, 2-86
Persons with disabilities, 1-24–25, 2-53–54, 4-8, 4-13, 4-66, 4-70–77, 4-81–83, 5-6, 5-8, 5-15, 5-18–19, 6-16, 6-19–20, 7-9, 8-42, 8-44–47, 8-49
Planning
 Freeway, 8-2
 Functional classification; see Classification, functional
 Land use, 2-38
 Transportation improvements, 1-26, 2-17
 Ultimate development of four-lane divided arterials; see Arterials
Pollution Control; see also Noise
 Vehicular emissions, 2-89–90
Project purpose and need, 1-3–5
Project types, 1-28–32
 New construction projects, 1-28–29
 Reconstruction projects, 1-29–30
 Construction projects on existing roads, 1-30–32
Public transit
 Buses, 4-78–84
 Bus lanes, 7-68
 Bus stops, 4-79–84, 7-66–67
 General, 4-77–78
 High-occupancy vehicle (HOV) facilities, 4-82–84
 Joint use of right-of-way, 8-40
 On arterials, 4-80–82; see also Arterials
 On freeways, 4-79–80; see also Freeways
 Rail, 8-47–51
 Rapid transit, 4-77–78
 Stairs, ramps, and escalators, 8-46–47
 Station location and spacing, 8-49–50
 Turnouts, bus, 4-79–82
Profile; see Alignment—Vertical
Radii
 Curb return, 9-65–67
Intersection, 9-64, 9-117–120
Islands, ends of, 9-76; see also Islands
Minimum, 3-33–36
Minimum radius curves without superelevation, 3-20
Minimum turning, 2-58–85, 9-119–120
Tables, 3-34–35
Turning roadways, 3-61, 9-61
Railroad–highway grade crossings
Alignment and profile, 9-159–160
Arterials; see Arterials
Collectors, 6-10
Design, 9-161–162
Lighting, 3-189
Local roads and streets, 6-10
Protective devices, 9-161
Sight distance, 9-162–168
Surface types, 9-168
Traffic control, 6-10, 9-161–162
Widths, 6-10
Rail transit; see Public transit
Ramps
Alignment, 10-102, 10-107–111
Approach nose, 10-109, 10-123–125
Button-hooked, 10-127–128
Clearances
 at structures, 10-110
 horizontal; see Clearances
Components, 10-102
Compound curves, 10-107
Connection to frontage roads, 4-44, 10-42
Contrasting surface, 10-122
Controlling feature, 2-43
Crossover crown line, 10-111
Cross section, 10-121
Cross slope, 10-111–114
Curbs, 4-70–76, 10-122
Curvature, 10-107–109
Definition, 10-102
Design speed, 10-105–106
Diagonal, 10-102–103
Direct connection, 10-103, 10-106
Distance between successive ramp terminals, 10-126–128
Emergency escape, 3-154–164
example, 3-163
maintenance, 3-164
Entrances and exits, 10-128–150
Examples, 10-102–105
Gores, 8-20, 10-37, 10-114–120
Grades, 10-109–110
Lane reductions; see Lanes
Left, 10-32, 10-123
Lengths, 10-109–112
Loop, 10-103, 10-106, 10-124
Metering; see Interchanges
Number; see Interchanges—Configurations
Outer connection, 10-103
Partial cloverleaf, 10-60–63
Pedestrians; see Pedestrian facilities
Profile, 10-109–110
Radii; see Radii
Right turns, 10-105
Semidirect, 10-103, 10-106
Shapes, 10-102–105
Shoulders, 10-121–122
Sidewalk curb, 4-70–76
Sight distance, 10-102, 10-109, 10-123–124
Slip, 10-108
Speed-change lanes, 10-128
Spiral curves; see Transitions
Superelevation, 10-111–114
Terminal design, 2-34–35, 10-106–107, 10-123–128
Traffic control, 2-34–35, 2-43, 10-124–125
Tapers, 10-118, 10-128–130
Traveled-way widths, 10-121–122
Types, 10-102–105
Vertical curves, 10-111
Weaving; see Weaving sections
Wheelchair, 9-74
Widths, 10-121

Wrong-way entry, 10-98–102
Ramp metering; see Interchanges
Rapid transit; see Public transit
Reconstruction projects, see Project types
Recovery area; see Clear zones
Recreational roads, 5-27–37; see also Local roads and streets
Recreational vehicles, 2-55–57, 2-86
Climbing lanes for, 3-144
Effects on volume, 2-35
On grades, 3-126, 3-129, 3-133–136
Resource recovery and local service roads, 5-37–39; see also Local roads and streets
Rest areas, 3-187–188
Definition, 3-187
Information centers, 3-187
Scenic overlooks, 3-187
Retaining walls
Effect on traffic operations, 4-9, 7-48
Lateral clearances; see Clearances
Need for, 4-29, 8-6–7, 8-14
On depressed freeways, 8-14
Sight distance, 3-118, 10-81
Reverse-flow roadways, 8-33–36
Advantages, 8-33–34
Cross section, 8-33
Examples, 8-35–36
Terminals, 8-34–36
Right turns; see Auxiliary lanes
Right-of-way
Arterials; see Arterials
Collectors; see Local roads and streets
Drainage, 4-23–26
Freeways; see Freeways
Interchanges; see Interchanges
Local roads and streets; see Local roads and streets
Two-lane highways, 7-7, 7-11–12
Utilities, accommodating, 3-190–193
Width, 5-7, 6-7, 7-6–7, 7-24–27
With frontage roads, 9-153–154
Roadside
Access control; see Control of access and access management
Borders and sidewalks; see Borders or Sidewalks
Clear zones; see Clear zones
Driveways, 4-52–55
Erosion control, 4-28
Fencing, 4-57
Mailboxes, 4-55–57
Recovery areas; see Clear zones
Seeding and planting; see Erosion control
Sideslopes, 4-28–32
Sight distance; see Sight distance

Roadway, definition, 4-1
Roadway width; see Lanes
Road user benefit analyses; see Economic evaluation
Roundabouts; see Intersections

Rounding
Shoulders, 4-32
Sideslopes, 4-30–32

Runoff; see Superelevation

Runout, superelevation; see Tangent runout

Safety
Alignment; see Alignment—Horizontal or Alignment—Vertical
Auxiliary lanes, 4-17
Bicycles, 2-54–55
Borders, 6-19
Bus stops; see Buses
Causal factors for crashes, multiple, 2-90–2-91
Climbing lanes, 3-137
Clear zones, 2-92, 4-17
Control of access, 2-45–49, 2-91–93
Crashes, 2-94
Curbs, 4-19–21
Decisions, frequency of, 2-8
Driver errors, 2-8–9
Driver expectancy, 2-8
Day versus night, 3-170–171
Emergency escape ramps, 3-154–164
Frontage roads, 4-41, 9-151–157
General, 2-90
Grade, 3-130–136
Grade separations; see Grade separation
Guardrail, 2-93
Interchanges, 10-9
Intersections, 9-2
Lane width, 4-9
Lighting, 3-188–190
Local roads and streets; see Local roads and streets
Low-volume roads, 4-10
Mailboxes, 4-55–57
Maneuvers, traffic, 3-7–9
Medians, 4-35–37
Older drivers, 2-2
Pavement skid resistance, 4-8
Pedestrians; see Pedestrians
Rail transit, 8-47–51
Ramps, 10-102–105
Range/variance of speeds; see Speed
Relation to geometric design, 1-3–5
Responsibility, 2-90
Rest areas, 3-188
Reverse-flow operation, 7-60–62
Roadside design, 2-92–93, 4-17–18
Roadside development, 3-189
Roundabouts, 9-146
Rumble strips, 4-16–17, 10-115
Sight distance; see Sight distance
Slope breaks, 4-2–4
Speed, 2-91–92
Speed-change lanes, 10-128
Traffic barriers, 2-92–93, 4-21
Traffic control devices, 2-93, 3-193–194
Trucks, 3-2–7
Two-way left-turn lanes, 9-116
Tunnels, 4-57–58
Work zones, 3-195

Scenic overlooks; see Rest areas

Shoulders
Adjacent to climbing lanes; see Climbing lanes
islands, 9-76–79
passing lanes; see *Passing lanes*
Arterials; see *Arterials*
Continuous, 4-12–13
Contrasting surfaces, 4-15–16
Cross section, 4-13–14
Cross slope, design values, 4-14
Cross slope, maximum slope break; see *Cross slope*
Curb, 4-12
Curb, along outer edge, 4-12
Definition, 4-10
Divided highways; see *Divided highways*
Driving, 3-153–154, 4-10
Freeways; see *Freeways*
General characteristics, 4-10–12
Graded width, 4-10, 4-12–13
Intermittent, 4-12–13
Left shoulder, divided highways, 8-3, 8-9, 8-21, 8-34
Local roads and streets; see *Local roads and streets*
On structure, 4-13, 10-22
Paved, 4-10
Ramps; see *Ramps*
Sidewalks; see *Sidewalks*
Stability, 4-14–15
Superelevation; see *Cross slope*
Turnouts; see *Turnouts*
Useable width, 4-10, 4-12–13
Use sections, 3-154
Vertical clearance; see *Clearances*
Width, 3-112–113, 4-10–12
With guardrail; see *Guardrails*

Sidewalks
Along roadways, 4-32
Location, 4-65–4-67
Overpasses, 4-67–4-69, 10-25–10-26
Pedestrians; see *Pedestrians or Pedestrian facilities*
Roundabouts, 9-150–151
Underpasses, 4-67–4-68
Widths, 2-52, 4-65, 6-19, 9-8

Sidewalk curb ramps, 4-70–76

Sight distance
Arterials; see *Arterials*
Collectors; see *Collector roads and streets*
Criteria for measuring, 3-15
Decision, 3-7–9
Definition, 3-15
Design for, 3-1–3-19
Design speed, in relation to, 3-4–6, 3-8–9, 3-11–14
General, 3-1–3-2
Headlight, 3-15–16
Height of eye, 3-15
Height of object, 3-15
Horizontal curves, 3-113–119; see also *Curves—Horizontal*
Interchanges; see *Interchanges*
Intersections; see *Intersections*
Local roads and streets; see *Local roads and streets*
Measuring and recording, 3-15–19
Multilane highways, 3-14
No control, intersections with, 9-40–42
Passing; see *Passing sight distance*
Perception–reaction, 3-12
Railroad–highway grade crossings, 6-10
Recreational roads, 5-31–32
Resource recovery and local service roads; see *Local roads and streets*
Roundabouts, 9-151
Signal control, intersections with, 9-55–56
Skew, 9-58–59
Stop control, intersections with, 9-42–47
Stopping; see Stopping sight distance
Underpasses, 3-177–179, 10-20
Vertical curves, 3-166–179
Yield control, intersections with, 9-50–55

Sight triangles, 9-36–39

Signal control
Arterials; see Arterials
Effect on intersection design, 3-193–194
Location, 3-193–194
Pedestrians, 3-193–194, 9-63
Warrants, 3-193–194

Signs
Arterials, 7-9, 7-34, 7-57, 7-61
Climbing lanes; see Climbing lanes
Collectors; see Collector roads and streets
Construction, 3-195
Detours, 3-195
Escape ramps, 3-161
General, 3-193–194
Intersections, 9-24, 9-37
Islands, 9-70, 9-75
Local roads and streets; see Local roads and streets
Location, 3-193–194
Passing lanes; see Passing lanes
Railroad–highway grade crossings, 6-10
Recreational roads, 5-37
Resource recovery and local service roads; see Local roads and streets
Relationship to design, 3-193–194
Shoulder use sections, 3-154
Types, 2-4

Single-point diamond interchange; see Interchanges

Skid resistance; see Pavement

Sloping curbs; see Curbs

Speed
Curve speed, 3-21–30
Design; see Design speed

Function, 2-22–27
Operating, 2-22
Pedestrian, walking, 2-52
Running, 2-22–23, 3-30, 3-36
Safety, 2-91–92
Spot, 2-23
Trucks, on grades, 3-6–7, 3-122–126, 3-133–136

Speed-change lanes
Acceleration lanes, 4-79, 9-63, 9-94
Bus turnouts, 4-79
Deceleration lanes, 9-62, 9-94
Definition, 10-128
General, 10-128
Intersections, 9-62
Length, 10-130–142
Ramps; see Ramps
Taper; see Tapers
Warrants, 9-105–109
Width, 10-27

Spirals; see Transitions

Spline
For runoff, 10-111
For vertical curves, 9-91, 10-111

Stage construction
Grade separation structures, 10-10
Interchanges, 10-10
Ultimate development of four-lane divided arterials; see Arterials

Stop control
Intersections; see Intersections
Ramp terminals; see Ramps

Stopping sight distance
Arterials; see Arterials
Barriers, noise, 4-49
Brake reaction time, 3-2–3
Braking distance, 3-3–5
Collectors, 6-5, 6-15
Deceleration rate, 3-3–4
Design values, 3-5–6
Effect of grade, 3-5–6
General, 3-2
Height of eye, 3-15
Height of object, 3-15
Intersections; see also Intersection—Sight distance
Local roads and streets; see Local roads and streets
Multilane highways, 3-14
Measuring and recording, 3-15–19
On horizontal curves, 3-114–119
On vertical curves
 crest, 3-7, 3-15, 3-166
 sag, 3-172
Perception–reaction time, 9-94–96
Recreational roads, 5-31–32
Resource recovery and local service roads; see Local roads and streets
Trucks, 3-6–7
Wet pavement, 3-4–5

Structures; see also Grade separations
Clearances; see Clearances
Collectors; see Collector roads and streets
Freeways; see Freeways
Local roads and streets; see Local roads and streets
Lighting; see Lighting
Pedestrian accommodations; see Pedestrian facilities
Railings, 10-25–26
Roadway width, 10-21
Structural capacity, 5-9

Super elevation
Accelerometer, 3-24
Arterials; see Arterials
Axis of rotation with medians, 3-86–87
Ball-bank indicator, 3-23
Collectors; see Collector roads and streets
Design rates, 3-41–52
Development of finalized e distribution, 3-37
Distribution of e and f, 3-37–41
Effect of grades, 3-35–36
Freeways, 3-36; see also Freeways
General considerations, 3-20–21
Intersection curves, 9-59, 9-83
 maximum rate, 3-32
runoff, 9-83–84
Limiting rates, 3-20–21, 3-72–73, 3-78–79
Local roads and streets; see Local roads and streets
Low-speed design, 3-62
Maximum rates, 3-31–33
Ramps; see Ramps
Rates for design, 3-41–52
Recreational roads, 5-31–32
Resource recovery and local service roads; see Local roads and streets
Runoff, 3-61–85
 definition, 3-61
 design, smooth profiles, 3-85
 length, 3-62–69
 location with respect to end of curve, 3-81
 methods of attainment, 3-81–85
 with medians, 4-6
Runout, tangent, 3-70; see also Tangent runout
Sharpest curve without, 3-58
Side friction factor, 3-21–30
Theoretical considerations, 3-72
Typical cross sections, 4-4
Turning roadway terminals, 3-60, 9-84–91
Urban streets, low speed, 3-53–59

Surface; see Pavement
Systems; see Classification, functional
Tangent runout, 3-70, 3-79–81
Tapers
 Auxiliary lanes; see Auxiliary lanes
 Beyond offset nose, 10-118
 Climbing lanes; see Climbing lanes
 Passing lanes; see Passing lanes
 Speed-change lanes, 9-100–104
 Turnouts, 3-152–153, 4-16
Terminals
 Capacity; see Capacity
 Distance between, 10-126–128
 Distance from structure, 10-125–126
 Elevated freeways, 8-20; see also Freeways
 Entrance, 10-128–134, 10-143–145
 Exit, 10-135–139, 10-146–147
Index

Gore areas, 8-20; see also Ramps
Multilane free-flow, 10-143
Ramp; see Ramps
Sight distance; see Sight distance
Single-lane free-flow, 10-128–143
Superelevation, 3-60

Terrain, 3-121–122

Topography
Effect on alignment, 3-119–122, 3-181
climbing lanes, 3-137–139
design speed, 9-160
grade separation structures, 10-18–22
interchange design, 10-2–4, 10-7
passing lanes, 3-147
widely separated roadways, 7-12–13, 7-28
warrants for grade separation, 10-18

Traffic
Average daily (ADT), 2-13–14, 2-18
Characteristics, 2-13–29
Composition, 2-19–20
Control devices; see Traffic control devices
Current, 2-20
Design hourly volume (DHV), 2-13, 2-16–18
Design traffic conditions, 2-13
Design year, 2-13
Directional distribution, 2-18–19
Flow, 2-27–29, 2-37–41
General considerations, 2-13
Highest hourly volume (HV), 2-14–18
Lane assignment, 9-4, 9-145
Maintenance during construction, 3-195
Passenger car, 2-19
Passenger-car equivalency, 2-35
Peak-hour, 2-35
Projection, 2-20–21
Seasonal fluctuation, 2-16
Speed, 2-21–29
Thirtieth highest hourly volume (30 HV), 2-14–16
Truck, 2-19; see also Trucks
Volume, 2-13–17

Traffic barriers
Bridge railings, 4-37, 10-25–26
Curbs, 4-21, 4-23
Crash cushions, 2-92, 4-36, 4-38
General, 4-33–34
Longitudinal, 4-34–37
Median, 4-35–37
Roadside, 4-12, 4-34–35

Traffic control devices
Arterials; see Arterials
Collectors, 6-11
General, 2-4, 2-93, 3-193–194
Intersections, 3-194, 9-39–9-40
Local roads and streets, 6-11
Markings; see Markings
Reverse-flow roadways, 8-36
Railroad–highway grade crossings; see Railroad–highway grade crossings
Sight distance at intersections, relationship to, 3-8, 9-37, 9-47
Signals; see Signal control
Signs; see Signs

Traffic regulation, 9-67

Transit facilities, see Public transit

Transitions
Advantages, 3-61–62
Adjustment factors, 3-63–64
Compound curves, 3-81, 3-88–91
Definition, 3-61
General, 3-61–62
Minimum grades, 3-87–88
Runoff, superelevation; see Superelevation
Runout, tangent, 3-70, 3-79–80
Spiral curves, 3-62, 3-73–85, 3-89, 10-32, 10-107
Traveled way widening, 3-74, 3-91–104
Turning roadways, 3-88–89
Types, 3-61
Two-lane and four-lane sections, 3-63–64

Traveled way, 4-1–9
Definition, 4-1
Ramp width; see Ramps
Traffic conditions, 3-111
Widening on curves, 3-91–103
Width; see Width

Trucks; see also Design vehicles
 Acceleration on grades, 3-122–126
 Brake-check areas, 3-164
 Climbing lanes; see Climbing lanes
 Combination, 2-61
 Control grades, 3-130–136
 Critical length of grade, 3-126, 3-130–136
 Deceleration on grades, 3-6–7
 Definition for operational analysis, 2-19
 Height of eye, 3-15
 Minimum turning radius, 2-58–85
 Off-tracking, 2-61, 3-91–96
 Operating characteristics on grades, 3-122–126
 Single unit, 2-62, 2-65–66
 Stopping sight distance, 3-2–7
 Weight/power ratio, 3-123, 3-126, 3-136

Tunnels
 Alignment, 4-59
 Clearances, 4-62
 Costs, 4-58
 Cross section, 4-61, 4-63
 Design considerations, 4-59–60
 Examples, 4-63–64
 General, 4-57–58
 Grades, 4-59
 Lighting, 3-189, 4-59
 Sidewalks, 4-21
 Types, 4-58
 Ventilation, 4-59

Turning; see also Design vehicles
 Design vehicles, 2-58–85
 Indirect left turns, 9-124–141
 Lanes; see Auxiliary Lanes
 Movements; see Intersections
 Operation on curves, 3-98
 Radius, minimum, 2-58–59, 9-119–120
 Simultaneous left turns, 9-115–117
 Speed, 9-122–123
 Track width, 3-92–96

Turning roadways
 Approach nose, 9-76–80, 9-84
 Curvature, 3-59–61
 Crosswalk, 9-60–61
 Design, 3-59, 9-63–65
 Effect of curb radii, 9-65–67
 General, 3-59, 9-60
 Islands, 9-61, 9-82; see also Islands
 Pedestrians, 9-63
 Radii, 3-61, 9-61
 Right-angle turns, 9-65
 Shoulders, 3-112–113
 Stopping sight distance, 9-91–92
 Superelevation, 3-59–61, 9-83–91
 Terminal design, 3-77–78, 9-83–90
 Widths, 3-103–112, 9-60

Turnouts
 Bus, see also Buses
 Definition, 3-152
 2+1 roadways, 3-149–152
 Arterials; see Arterials
 Climbing lanes, 3-137–142
 Collectors, 6-2
 Local roads and streets, 5-6–7
 Passing lanes; see Passing lanes
 Passing sight distance, 3-10–14
 Shoulder driving, 3-153–154
 Shoulder use sections, 3-154
 Turnouts, 3-152–153, 5-34

Ultimate development; see Arterials

Underpasses; see Grade separations

Utilities
 Adjacent to clear zones, 3-192
 General, 3-190–192
 Location, 3-191–192
 Rural, 3-192
 Urban, 3-192–193, 6-19, 7-56
U-turns
 Crossovers, 9-130–135
 Designs for, 9-126–135
 Median openings, 9-136–139
 Restricted crossing (RCUT), 9-131–135
 Spacing, 9-136–140
 Special designs, 9-141

Vehicles; see Design vehicles, Recreational vehicles, Trucks, and Turning

Vertical alignment, see Alignment—Vertical

Vertical curbs; see Curbs

Vertical curves; see Curves—Vertical

Viaducts; see Freeways

Walkways; see Sidewalks

Warrants
 Climbing lanes; see Climbing lanes
 Grade separations, 10-3–5
 Interchanges, 10-3–5
 Passing lanes; see Passing lanes
 Shoulders, 4-10–12
 Sidewalks, 2-50–54, 4-65–67

Weaving sections
 Capacity, 2-38
 Cloverleafs, 10-95
 Definition, 2-32, 2-34, 10-94
 Design volumes, 2-38
 Examples, 2-39
 General, 2-32, 2-38
 Length, 2-38–40
 Multiple, 2-40
 Simple, 2-40
 Types, 2-38–40

Widening
 Design values, 3-91–97
 To introduce divisional islands, 9-73
 Traveled way, on curves, 3-91–104

Width
 Arterials; see Arterials
 Borders, 6-19
 Bridges and drainage structures; see Structures
 Climbing lanes; see Climbing lanes

Collectors; see Collector roads and streets
Extra allowance for operation on curves, 3-98
Gutter, 4-21–22
Lanes, 4-9–10; see also Lanes
Local roads and streets, 5-6–7
Medians, 4-38–40
Median lanes, see also Median lanes
Outside traveled way, 3-112–113
Pavement; see Pavement
Ramps, 3-160
Right-of-way, see also Right-of-way
Shoulders; see Shoulders
Sidewalks; see Sidewalks
Track, 3-92
Traveled way, 3-96–110
Turning roadways; see Turning roadways

Wrong-way entry
 Design to discourage, 9-69, 10-102

Zoning; see Land use
 Access control, 2-45–46